989 resultados para the southern Yellow Sea surface sediment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

armful benthic dinoflagellates, usually developing in tropical areas, are expanding to temperate ecosystems facing water warming. Reports on harmful benthic species are particularly scarce in the Southern Mediterranean Sea. For the first time, three thermophilic benthic dinoflagellates (Ostreopsis cf. ovata, Prorocentrum lima and Coolia monotis) were isolated from Bizerte Bay (Tunisia, Mediterranean) and monoclonal cultures established. The ribotyping confirmed the morphological identification of the three species. Maximum growth rates were 0.59 ± 0.08 d−1 for O. cf. ovata, 0.35 ± 0.01 d−1 for C. monotis and 0.33 ± 0.04 d−1 for P. lima. Toxin analyses revealed the presence of ovatoxin-a and ovatoxin-b in O. cf. ovata cells. Okadaic acid and dinophysistoxin-1 were detected in P. lima cultures. For C. monotis, a chromatographic peak at 5.6 min with a mass m/z = 1061.768 was observed, but did not correspond to a mono-sulfated analogue of the yessotoxin. A comparison of the toxicity and growth characteristics of these dinoflagellates, distributed worldwide, is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

海洋沉积环境中多氯联苯(PCBs)和多环芳烃(PAHs)的研究对于揭示其污染历史、来源途径、迁移转化以及评价其对环境的潜在生态风险都有重要的科学意义和应用价值,本研究选择我国典型近海中比较开阔的南黄海和受人为影响严重的渤海湾沉积物中的PAHs和PCBs作为主要研究对象,结合对生态环境对应关系的剖析,系统研究了沉积物中PAHs和PCBs的地球化学分布特征、影响控制因素、演变趋势、潜在生态风险等,获得了以下系统的认识: 1.南黄海表层沉积物中多环芳烃和多氯联苯的分布与沉积类型及模式相一致,受控于“沉积类型-动力过程-来源途径”。PCBs含量(范围:518~5848 pg/g,平均值:1715 pg/g)低于受人为影响严重的长江口、珠江口和渤海,分布具有中部海区>东部海区>西部海区的特征;PCBs随着沉积物粒径的减小和粘土含量的增加而增加,且与总有机碳(r=0.61,p<0.01)含量呈显著线性正相关,表明PCBs在沉积物中的分布受控于被水动力过程原动力控制的沉积类型与沉积模式。 2. 1914~2004年间,南黄海沉积物中PAHs和PCBs的变化比较显著,在时间序列上经历了三个明显的不同阶段。近90年来,PAHs和PCBs在柱状样中垂直分布随深度的增加而降低,即近年南黄海沉积物中PAHs和PCBs的残留水平比上世纪初明显增加。其中1914~1932年间,PAHs和PCBs保持在较低的水平;1932~1962年间,PAHs和PCBs的含量发生急剧的变化,在1932~1944和1956~1962年两个时间段,PAHs和PCBs的含量达到峰值;自1962年至今,PAHs和PCBs呈稍有增加趋势。PAHs的组成和特征组分比值分析显示,1920~1944年间PAHs主要来自石油产品泄漏,1944~1980年间,主要来自草/木材/煤燃烧,1980年至2004年则显示出石油和燃烧产物混合来源的特征。 3.渤海湾沉积物中的PAHs、PCBs、DDTs和HCHs的分布模式不同,反映了这四种污染物的地球化学行为存在着明显的差异性。PAHs、PCBs、DDTs和HCHs的含量范围为149.0~393.4 ng/g,360.8~1728.3 pg/g,462.2~2007.3 pg/g和4.31~33.8 ng/g。马颊河口、海河口和黄河口附近的海区的沉积物中PAHs和PCBs的含量显著高于渤海湾内其它站位,DDTs在湾外沉积物中的含量大于湾内,在海河口附近站位测得HCHs含量的最高值,在其它站位其浓度变化不大。PAHs特征成分的比值显示渤海湾沉积物中PAHs主要来源于草/木材/煤燃烧的产物经过大气的输运过程进入水体;DDTs和HCHs的组成显示,在DDTs和HCHs被禁用后仍有新的输入源。 4.南黄海沉积物POPs总体水平不高,其环境污染危害和潜在生态风险不大,从沉积物POPs的角度来说南黄海的环境质量较好。潜在生态危害指数评价表明,渤海湾沉积物中芴可能会产生潜在的生态风险,DDTs和HCHs的含量低于一类沉积物质量标准值,总体而言,其沉积物质量良好,潜在生态风险较低。 论文的创新性点在于:1)首次研究了近百年南黄海沉积物中多环芳烃和多氯联苯的演变趋势,判断了其来源并对近百年二者的潜在生态风险进行评价。2)系统剖析了南黄海及渤海湾的生态环境与PAHs和PCBs的耦合关系,对阐明POPs的毒理效应有重要的科学意义。3)系统解析了渤海湾沉积物中PAHs,DDTs和HCHs的污染现状,来源和迁移途径,可为科学开发和利用渤海海域提供重要的理论依据。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本论文在解析了南黄海生态环境的基础上,首次研究揭示了浮游植物固碳强度的年际变化及生态反馈机制,获得了东中国近海浮游植物固碳强度及对海域源/汇格局的影响程度;同时,用室内模拟实验探讨了重金属和有机污染物胁迫下海水无机碳体系和源汇格局的变化过程,获得了一些新的认识。主要结论如下: 1. 南黄海浮游植物固碳强度具有明显的时空变化特征,与海域光照、流系和水团变化、海水磷的浓度等因素密切相关,并在一定程度上决定海区碳源/汇的性质。2005年秋季浮游植物日固碳量达9.5万吨,1983-2005年间,南黄海浮游植物固碳强度有降低的趋势,与海水关键营养盐-磷的限制有关。东中国近海浮游植物年总固碳量约为2.2亿吨,约占全球近海浮游植物的年固碳量的2.0%。 在综合分析秋季南黄海水文、化学、生物背景的基础上,系统阐明了海域浮游植物固碳体系的生物地球化学机制。结果表明,2005年秋季南黄海浮游植物固碳强度,即初级生产力变化在 97−701 mgC m-2 d-1之间,平均为307 mg C m-2 d-1;与其关系比较密切的环境因子为海水透明度、盐度、pH、氨氮 (NH4-N)、磷酸盐 (PO4-P) 以及Chl a。在这些因素中,PO4-P对初级生产力的影响最大,显然11月份南黄海的磷是浮游植物生长的限制因子,次之的影响因素是Chl a和NH4-N。 对南黄海源汇格局的研究发现,如果除去涌升流较为活跃的站位(A9、B7、B8、B9、C8、C9、 D9和A1),2005年秋季表层海水pCO2与浮游植物固碳强度明显负相关(r=-0.8,n=23, p<0.001)。在南黄海东部浮游植物固碳强度较高,pCO2值较低;而在西部海区浮游植物固碳强度较低的区域,其pCO2值较高。碳源/汇转折点浮游植物固碳强度为230 mgC m-2 d-1,即小于此值,海区为大气二氧化碳的源,反之为汇,并且CO2汇区浮游植物固碳强度平均值约是CO2源区的2倍多;浮游植物固碳作用,在某一时间和空间尺度内,基本决定了海区的源汇格局。估算结果显示,东中国近海浮游植物固碳量约为222×106t a-1,约为东中国近海通过海-气界面总表观碳汇强度每年1369万吨的16.2倍,仅就浮游植物的年固碳量而言,东中国近海约占全球近海浮游植物的年固碳量的2.0%。 研究揭示了近年来南黄海浮游植物固碳强度具有区域与年际变化明显这一显著特点。一般,近岸区(由黄海沿岸水和表层水控制)内,光照是浮游植物固碳的主要限制因子;从2001年后的大多数年份中,中央区(黄海冷水团控制)的浮游植物固碳强度均与磷酸盐浓度显著正相关,但与氮浓度的相关性不大,说明南黄海生态系统普遍存在着磷限制而非氮限制;混合区终年受黄、东海混合水控制,受到光照条件和营养盐浓度同时影响。根据本次观测所获数据,结合以前研究者的调查资料,我们发现从1983年到2005年,南黄海浮游植物优势种由Bacillariophyta变为Pyrrophyta,浮游植物细胞丰度和Chl a明显下降,浮游植物固碳强度几乎下降了二分之一 (由569.50 mgC m-2 d-1下降至306.83 mgC m-2 d-1),说明南黄海在世界边缘海固碳过程中的作用在降低。经过相关水质参数及生态环境变化的分析,以上现象是对关键营养盐磷的限制以及光限制响应的缘故。此外,研究还发现,由于南黄海初级生产者产量下降所引起的一些生态反馈信息,如浮游动物固碳量的下降和鱼类产量的锐减。 2. 室内模拟实验显示,重金属(铅、铜、镉和锌)及有机污染物(乙醇、丙酮、尿素和多灭磷)对水体生物固碳体系有重要影响,较低浓度时可提高水体的固碳能力,相应水体中的DIC、HCO3-和 Pco2 与对照组相比都明显下降 (P<0.01);当污染物达到一定浓度后,水体生物的固碳能力明显下降,其有机碳可降解转化为无机碳。当污染物小于转折浓度水体为大气二氧化碳的汇,反之为源。 水体固碳体系对于不同种类、不同浓度的污染物质所表现的受胁迫情况不同,低浓度各污染物(包括重金属和有机污染物)添加组中(对于重金属为0.1和1µmol•L-1,醇和酮分别为<0.5 mol L-1和<0.75 mol L-1),藻干重及固碳量均要大于初始值,说明适量的外源污染可能会促进藻类生长,提高水体的固碳能力,相应水体中的DIC、HCO3- 和PCO2与对照组相比都明显下降 (P<0.01)。当污染物达到一定浓度后,由于其毒害作用,使得水体内生物的固碳能力下降,甚至分解并转化为无机碳,从会引起DIC、HCO3- 和PCO2含量的升高,其含量上升幅度会因固碳体系对不同种类污染物耐受程度的差异而不同。对于尿素和多灭磷,二者浓度分别达到80和20mgL-1时,水体中二氧化碳各参数仍呈现下降趋势,说明在该浓度范围内,大型藻类(如石莼)仍可利用添加物中的氮和磷,将其做为氮源或磷源,促进水体总固碳量的增加。 污染物胁迫对水体碳源汇能力及格局可起到一定的调控作用,与污染物的浓度密切相关,污染物存在着一转折浓度,分别为5µmol L-1(铜)、20µmol L-1(镉) 0.75mol L-1(酮),当污染物添加小于转折浓度并排除其他影响因素时,水体表现为大气CO2的汇,并且适量的增加污染物浓度会使海洋碳汇能力有所增强;而当污染物超出转折浓度时,水体成为CO2的源,其CO2的释放量是随着污染物浓度的增加而增大。对与研究中其他种类的污染物,在实验室设计范围内,水体始终表现为大气CO2的汇。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present alkenone-derived Sea Surface Temperature (SST) records from three marine cores collected within the southern Benguela Upwelling System (BUS) spanning the last 3 ka. The SST evolution over the last 3 millennia is marked by aperiodic millennial-scale oscillations that broadly correspond to climatic anomalies identified over the North Atlantic region. The BUS SST data further suggest cooling and warming trends opposite to the temperature evolution in the Moroccan upwelling region and in Antarctica. In contrast, the last decades are marked by a cooling of unprecedented magnitude in both the Benguela and Moroccan upwelling systems, which is not observed in the Antarctic record. These contrasted responses in Atlantic upwelling systems triggered by natural and anthropogenic forcings shed light on how different climatic mechanisms are mediated by ocean-atmosphere interactions and transmitted to the geological records of past and present climate changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa1. The deeper parts of the Southern Ocean exhibit some unique environmental features, including a very deep continental shelf2 and a weakly stratified water column, and are the source for much of the deep water in the world ocean. These features suggest that deep-sea faunas around the Antarctic may be related both to adjacent shelf communities and to those in other oceans. Unlike shallow-water Antarctic benthic communities, however, little is known about life in this vast deep-sea region2, 3. Here, we report new data from recent sampling expeditions in the deep Weddell Sea and adjacent areas (748-6,348 m water depth) that reveal high levels of new biodiversity; for example, 674 isopods species, of which 585 were new to science. Bathymetric and biogeographic trends varied between taxa. In groups such as the isopods and polychaetes, slope assemblages included species that have invaded from the shelf. In other taxa, the shelf and slope assemblages were more distinct. Abyssal faunas tended to have stronger links to other oceans, particularly the Atlantic, but mainly in taxa with good dispersal capabilities, such as the Foraminifera. The isopods, ostracods and nematodes, which are poor dispersers, include many species currently known only from the Southern Ocean. Our findings challenge suggestions that deep-sea diversity is depressed in the Southern Ocean and provide a basis for exploring the evolutionary significance of the varied biogeographic patterns observed in this remote environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Late Quaternary summer sea surface temperatures (SSTs) have been derived from radiolarian assemblages in the East Atlantic sector of the Southern Ocean. In the subantarctic and the polar frontal zone, glacial SSTs (oxygen isotope stages 2, 4, 6, and 8) were 3°-5°C cooler than today, indicating northward displacements of the isotherms about 2°-4° of latitudes. During interglacials, SSTs almost reached modern levels (oxygen isotope stages 7 and 9) or exceeded them by 2°-3°C (oxygen isotope stages 1 and 5.5). In the subantarctic Atlantic Ocean, changes in SST and calcium carbonate content of the sediment precede variations in global ice volume in the range of the main Milankovitch frequencies. Comparisons with the timing of North Atlantic Deep Water (NADW) proxy records suggests that this early response in the subantarctic Atlantic Ocean is not triggered by the flux of NADW to the Southern Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide a new multivariate calibration-function based on South Atlantic modern assemblages of planktonic foraminifera and atlas water column parameters from the Antarctic Circumpolar Current to the Subtropical Gyre and tropical warm waters (i.e., 60°S to 0°S). Therefore, we used a dataset with the abundance pattern of 35 taxonomic groups of planktonic foraminifera in 141 surface sediment samples. Five factors were taken into consideration for the analysis, which account for 93% of the total variance of the original data representing the regional main oceanographic fronts. The new calibration-function F141-35-5 enables the reconstruction of Late Quaternary summer and winter sea-surface temperatures with a statistical error of ~0.5°C. Our function was verified by its application to a sediment core extracted from the western South Atlantic. The downcore reconstruction shows negative anomalies in sea-surface temperatures during the early-mid Holocene and temperatures within the range of modern values during the late Holocene. This pattern is consistent with available reconstructions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare earth elements (REEs) of 91 fine-grained bottom sediment samples from five major rivers in Korea (the Han, Keum, and Yeongsan) and China (the Changjiang and Huanghe) were studied to investigate their potential as source indicator for Yellow Sea shelf sediments, this being the first synthetic report on REE trends for bottom sediments of these rivers. The results show distinct differences in REE contents and their upper continental crust (UCC)-normalized patterns: compared to heavy rare earth elements (HREEs), light rare earth elements (LREEs) are highly enriched in Korean river sediments, in contrast to Chinese river sediments that have a characteristic positive Eu anomaly. This phenomenon is observed also in primary source rocks within the river catchments. This suggests that source rock composition is the primary control on the REE signatures of these river sediments, due largely to variations in the levels of chlorite and monazite, which are more abundant in Korean bottom river sediments. Systematic variations in I LREE pound/I HREE pound ratios, and in (La/Yb)-(Gd/Yb)(UCC) but also (La/Lu)-(La/Y)(UCC) and (La/Y)-(Gd/Lu)(UCC) relations have the greatest discriminatory power. These findings are consistent with, but considerably expand on the limited datasets available to date for suspended sediments. Evidently, the REE fingerprints of these river sediments can serve as a useful diagnostic tool for tracing the provenance of sediments in the Yellow Sea, and for reconstructing their dispersal patterns and the circulation system of the modern shelf, as well as the paleoenvironmental record of this and adjoining marginal seas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applying the alkenone method, we estimated sea-surface temperatures (SSTs) for the past 33 kyr in two marine sediment cores recovered from the continental slope off mid-latitude Chile. The SST record shows an increase of 6.7°C from the last ice age (LIA) to the Holocene climatic optimum, while the temperature contrast between LIA and modern temperatures is only about 3.4°C. The timing and magnitude of the last deglacial warming in the ocean correspond to those observed in South American continental records. According to our SST record, the existence of a Younger Dryas equivalent cooling in the Southeast Pacific is much more uncertain than for the continental climate changes. A warming step of about 2.5°C observed between 8 and 7.5 cal kyr BP may have been linked to the early to mid-Holocene climatic transition (8.2-7.8 cal kyr BP), also described from equatorial Africa and Antarctica. In principal, variations in the latitudinal position of the Southern Pacific Westerlies are considered to be responsible for SST changes in the Peru-Chile current off mid-latitude Chile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of molecular composition of alkanes in bottom sediments of the southern part of Dvina Bay (White Sea) in October 2001 revealed the following main peculiarities of hydrocarbon behavior in the estuary: dominating of high molecular C23-C45 compounds and irregular distribution of hydrocarbons in bottom sediments as a result of high sedimentation rate and active hydrodynamics in the studied area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesium/calcium data from Southern Ocean planktonic foraminifera demonstrate that high-latitude (~55°S) southwest Pacific sea surface temperatures (SSTs) cooled 6° to 7°C during the middle Miocene climate transition (14.2 to 13.8 million years ago). Stepwise surface cooling is paced by eccentricity forcing and precedes Antarctic cryosphere expansion by ~60 thousand years, suggesting the involvement of additional feedbacks during this interval of inferred low-atmospheric partial pressure of CO2 (pCO2). Comparing SSTs and global carbon cycling proxies challenges the notion that episodic pCO2 drawdown drove this major Cenozoic climate transition. SST, salinity, and ice-volume trends suggest instead that orbitally paced ocean circulation changes altered meridional heat/vapor transport, triggering ice growth and global cooling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isotopic and micropaleontological deglacial records of three deep-sea cores from 44°S to 55°S have been dated by accelerator mass spectrometry. The available records did not allow accurate dating of the initiation of the deglaciation. By 13,000 years B.P., sea surface temperatures reached values similar to the present values. A cool oscillation abruptly interrupted this warm phase between 12,000 and 11,000 years B.P. Initiation of this cooling therefore preceded the northern hemisphere Younger Dryas by approximately 1000 years. Complete warming was reached by 10,000 years B.P., more or less synchronous with the northeast Atlantic Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex deglacial to Holocene oceanographic development in the Gulf of Guayaquil (Eastern Equatorial Pacific) is reconstructed for sea surface and subsurface ocean levels from (isotope) geochemical proxies based on marine sediment cores. At sea surface, southern sourced Cold Coastal Water and tropical Equatorial Surface Water/Tropical Surface Water are intimately related. In particular since ~10 ka, independent sea surface temperature proxies capturing different seasons emphasize the growing seasonal contrast in the Gulf of Guayaquil, which is in contrast to ocean areas further offshore. Cold Coastal Water became rapidly present in the Gulf of Guayaquil during the austral winter season in line with the strengthening of the Southeast Trades, while coastal upwelling off Peru gradually intensified and expanded northward in response to a seasonally changing atmospheric circulation pattern affecting the core locations intensively since 4 ka BP. Equatorial Surface Water, instead, was displaced and Tropical Surface Water moved northward together with the Equatorial Front. At subsurface, the presence of Equatorial Under Current-sourced Equatorial Subsurface Water was continuously growing, prominently since ~10-8 ka B.P. During Heinrich Stadial 1 and large parts of the Bølling/Allerød, and similarly during short Holocene time intervals at ~5.1-4 ka B.P. and ~1.5-0.5 ka B.P., the admixture of Equatorial Subsurface Water was reduced in response to both short-term weakening of Equatorial Under Current strength from the northwest and emplacement by tropical Equatorial Surface Water, considerably warming the uppermost ocean layers.