951 resultados para subcritical water temperatures


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Feeding and growth traits of Cyprinus carpio and Cyprinus pellegrini (both at age-0) were compared in three experiment, in an attempt to analyze potential causes for the displacement of the native C. pellegrini in the Xingyun Lake, Yuxi, Yunan, China. Experiment I was conducted in water which fluctuated between 15 and 20 degrees C. Experiment II and III were conducted in a laboratory and water temperature was maintained between 20 degrees C and 25 degrees C, respectively. Three common trends were noted for all three experiments: (1) feeding rate of C. carpio was lower than that of C. pellegrini, and this difference was found to be significant in experiment I; (2) growth rate of C. carpio was higher than C. pellegrini, and the difference was found to be significant in experiment II; (3) food conversion efficiency and energy retention efficiency for C. carpio were higher than those of C. pellegrini, and significant differences were noted in experiment I and II. Since the growth period for fish in the Xingyun Lake generally occurs when water temperatures are between 15 and 25 degrees C, it can be suggested that C. carpio has advantages over C. pellegrini in growth and food utilization efficiency, and lower food consumption than C. pellegrini. These physiological traits of C. carpio might allow this species to be more resistant to food shortage and predation, and may be partially responsible for the displacement of C. pellegrini by C. carpio.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oceanographic conditions and transport processes are often critical factors that affect the early growth, survival and recruitment of marine fishes. Sagittal otoliths were analysed to determine age and early growth for 381 jack mackerel (Trachurus japonicus) juveniles from Sagami Bay on the Pacific coast of Japan. Two separate hatching periods ( December and February-March) were identified. They originated from the spawning grounds in the East China Sea. Early growth and developmental rates of December-hatching fish were lower than those for February-March-hatching fish. It is likely that these differences were determined in the Kuroshio Current during transport from the spawning grounds to Sagami Bay, and the lower December water temperatures in the bay. Origin and hatch dates of juveniles in Sagami Bay were in contrast to previous research on Fukawa Bay, where April-or-later-hatching fish from spawning grounds in the coastal waters of southern Japan constituted about half of the juvenile population. Management of these two jack mackerel stocks needs to consider these differences in hatch date composition and spawning origins, as these differences could affect early growth and subsequent mortality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. This paper investigated the bioenergetic responses of the sea cucumber Apostichopus japonicus (wet weights of 36.5 +/- 1.2 g) to different water temperatures (5, 10, 15, 20, 25 and 30 degrees C) in the laboratory. 2. Results showed that theoretically the optimal temperatures for energy intake and scope for growth (SFG) of sub-adult A. japonicus was at 15.6 and 16.0 degrees C, respectively. The aestivation threshold temperature for this life-stage sea cucumber could be 29.0 degrees C by taking feeding cessation as the indication of aestivation. 3. Our data suggests that A. japonicus is thermo-sensitive to higher temperature, which prevents it from colonising sub-tropical coastal zones. Therefore, water temperature plays an important role in its southernmost distribution limit in China. 4. The potential impact of global ocean warming on A. japonicus might be a northward shift in the geographical distribution. Crown Copyright (C) 2009 Published by Elsevier Ltd, All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metabolic characteristics of the sea cucumber Aposticholpus japonicus (Selenka) during aestivation were studied in the laboratory. The effects of water temperature on oxygen consumption rate (OCR) and ammonia-N excretion rate (AER) in A. japonicus were determined by the Winkler and Hypobromite methods, respectively. Mature (large, 148.5 +/- 15.4 g, medium 69.3 +/- 6.9 g) and immature (small, 21.2 +/- 4.7 g) individuals aestivated at water temperatures of 20 and 25 degrees C, respectively. The metabolic characteristics of mature individuals were different from immature individuals during this period. The OCR of mature sea cucumbers peaked at 20 degrees C, and then dropped significantly at higher temperatures, whereas the OCR of the immature animals continued to increase slightly, even beyond the aestivation temperature. The AER of mature individuals peaked at 20 T, while that of the immature animals peaked at 25 degrees C. The relationships between dry weight (DW) and absolute oxygen consumption (R) and absolute ammonia-N excretion (N) could be described by the regression equation R or N=aW(b). With the exception of 15 degrees C, the O/N ratios (calculated in atomic equivalents) of large size sea cucumbers was close to 20 across the temperatures used in this study, indicating that their energy Source was a combination of lipid and protein. Oil the other hand, apart from small individuals maintained at 10 degrees C, the O/N ratios of the medium and small sea Cucumbers were close to 10, indicating that protein was their major energy source. The O/N ratios in all size groups remained unchanged after aestivation was initiated. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies on reproduction, hatchery management, and culture of Manila clams Ruditapes philippinarum were carried out in an attempt to optimize their culture conditions and techniques. Results from these studies led to the development of a three-phase culture method for Manila clam farming in northern China. The key components of the new method were: 1) early spawning and over-wintering indoors (greenhouse); 2) optimized larval culture conditions and techniques; 3) juvenile rearing in shallow, fertilized nursery ponds; 4) optimized stocking size and density and substrate for mudflat grow out. Broodstock were maturated indoors for a month from early April to early May. Primarily because of higher water temperatures in the greenhouse the clams spawned more than one month earlier than in the natural environment. From May to July, juveniles were reared for 1-2 months indoors to a size of 2.0-3.0 mm in shell length before being moved to outdoor, pre-disinfected, nursery ponds. Juveniles were then reared in the nursery ponds for one month to about 1.0 cm before being transferred to the mudflat for grow out. Juvenile clams in nursery ponds grew considerably faster than in the natural environment probably because of higher temperatures and more abundant natural food. During grow out, the clams were reared for 4-7 months until they reached a market size (3.0-3.3 cm). Juveniles produced after August were over-wintered in the greenhouse in which the water temperature was about 3 degrees C higher than that of the outdoor environment. Juveniles grew at an average rate of > 20 mu m day(-1), while in the natural environment no growth was observed during winter because of low temperatures. Juveniles in the greenhouse grew to 2-3 mm by the following March before being moved into outdoor nursery ponds. The three-phase culture method not only shortened the production period from spawn to market size from 24-36 months to about 10-14 months, but also prolonged the spawning season from 2 to 7 months, resulting in increased production of seed and market-size clams. Compared with the traditional method, the new method could increase the yield of market-size clams by 10-11 times, and increase the profit per ha mudflat by as much as 124 times and the profit per kg market-size clams produced by 13 times. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate-pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Variations in the ratio of magnesium to calcium (Mg/Ca) in fossil ostracodes from Deep Sea Drilling Project Site 607 in the deep North Atlantic show that the change in bottom water temperature during late Pliocene 41,000-year obliquity cycles averaged 1.5°C between 3.2 and 2.8 million years ago (Ma) and increased to 2.3°C between 2.8 and 2.3 Ma, coincidentally with the intensification of Northern Hemisphere glaciation. During the last two 100,000-year glacial-to-interglacial climatic cycles of the Quaternary, bottom water temperatures changed by 4.5°C. These results show that glacial deepwater cooling has intensified since 3.2 Ma, most likely as the result of progressively diminished deep-water production in the North Atlantic and of the greater influence of Antarctic bottom water in the North Atlantic during glacial periods. The ostracode Mg/Ca data also allow the direct determination of the temperature component of the benthic foraminiferal oxygen isotope record from Site 607, as well as derivation of a hypothetical sea-level curve for the late Pliocene and late Quaternary. The effects of dissolution on the Mg/Ca ratios of ostracode shells appear to have been minimal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Arctic Ocean is, on average, the shallowest of Earth’s oceans. Its vast continental shelf areas, which account for approximately half of the Arctic Ocean’s total area, are heavily influenced by the surrounding land masses through river run-off and coastal erosion. As a main area of deep water formation, the Arctic is one of the main «engines» of global ocean circulation, due to large freshwater inputs, it is also strongly stratified. The Arctic Ocean’s complex oceanographic configuration is tightly linked to the atmosphere, the land, and the cryosphere. The physical dynamics not only drive important climate and global circulation patterns, but also control biogeochemical cycles and ecosystem dynamics. Current changes in Arctic sea-ice thickness and distribution, air and water temperatures, and water column stability are resulting in measurable shifts in the properties and functioning of the ocean and its ecosystems. The Arctic Ocean is forecast to shift to a seasonally ice-free ocean resulting in changes to physical, chemical, and biological processes. These include the exchange of gases across the atmosphere-ocean interface, the wind-driven ciruclation and mixing regimes, light and nutrient availability for primary production, food web dynamics, and export of material to the deep ocean. In anticipation of these changes, extending our knowledge of the present Arctic oceanography and these complex changes has never been more urgent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ecosystems. Coastal oceanic upwelling, for example, has been associated with elevatedbiomass and abundance patterns of certain functional groups, e.g., corticated macroalgae.In the upwelling system of Northern Chile, we examined measures of intertidal macrobenthiccomposition, structure and trophic ecology across eighteen shores varying in theirproximity to two coastal upwelling centres, in a hierarchical sampling design (spatial scalesof >1 and >10 km). The influence of coastal upwelling on intertidal communities was confirmedby the stable isotope values (δ13C and δ15N) of consumers, including a dominantsuspension feeder, grazers, and their putative resources of POM, epilithic biofilm, andmacroalgae. We highlight the utility of muscle δ15N from the suspension feeding mussel,Perumytilus purpuratus, as a proxy for upwelling, supported by satellite data and previousstudies. Where possible, we used corrections for broader-scale trends, spatial autocorrelation,ontogenetic dietary shifts and spatial baseline isotopic variation prior to analysis. Ourresults showed macroalgal assemblage composition, and benthic consumer assemblagestructure, varied significantly with the intertidal influence of coastal upwelling, especiallycontrasting bays and coastal headlands. Coastal topography also separated differences inconsumer resource use. This suggested that coastal upwelling, itself driven by coastlinetopography, influences intertidal communities by advecting nearshore phytoplankton populationsoffshore and cooling coastal water temperatures. We recommend the isotopic valuesof benthic organisms, specifically long-lived suspension feeders, as in situ alternativesto offshore measurements of upwelling influence

Relevância:

80.00% 80.00%

Publicador:

Resumo:

River-dwelling fish, such as European graylings (Thymallus thymallus), are susceptible to changes in climate because they can often not avoid suboptimal temperatures, especially during early developmental stages. We analyzed data collected in a 62-year-long (1948-2009) population monitoring program. Male and female graylings were sampled about three times/week during the yearly spawning season in order to follow the development of the population. The occurrence of females bearing ripe eggs was used to approximate the timing of each spawning season. In the last years of the study, spawning season was more than 3 weeks earlier than in the first years. This shift was linked to increasing water temperatures as recorded over the last 39 years with a temperature logger at the spawning site. In early spring water temperatures rose more slowly than in later spring. Thus, embryos and larvae were exposed to increasingly colder water at a stage that is critical for sex determination and pathogen resistance in other salmonids. In summer, however, fry were exposed to increasingly warmer temperatures. The changes in water temperatures that we found embryos, larvae, and fry were exposed to could be contributing to the decline in abundance that has occurred over the last 30-40 years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In some fishes, water chemistry or temperature affects sex determination or creates sex-specific selection pressures. The resulting population sex ratios are hard to predict from laboratory studies if the environmental triggers interact with other factors, whereas in field studies, singular observations of unusual sex ratios may be particularly prone to selective reporting. Long-term monitoring largely avoids these problems. We studied a population of grayling (Thymallus thymallus) in Lake Thun, Switzerland, that has been monitored since 1948. Samples of spawning fish have been caught about 3 times/week around spawning season, and water temperature at the spawning site has been continuously recorded since 1970. We used scale samples collected in different years to determine the average age of spawners (for life-stage specific analyses) and to identify the cohort born in 2003 (an extraordinarily warm year). Recent tissue samples were genotyped on microsatellite markers to test for genetic bottlenecks in the past and to estimate the genetically effective population size (N(e) ). Operational sex ratios changed from approximately 65% males before 1993 to approximately 85% males from 1993 to 2011. Sex ratios correlated with the water temperatures the fish experienced in their first year of life. Sex ratios were best explained by the average temperature juvenile fish experienced during their first summer. Grayling abundance is declining, but we found no evidence of a strong genetic bottleneck that would explain the apparent lack of evolutionary response to the unequal sex ratio. Results of other studies show no evidence of endocrine disruptors in the study area. Our findings suggest temperature affects population sex ratio and thereby contributes to population decline. Persistencia de Proporción de Sexos Desigual en una Población de Tímalos (Salmonidae) y el Posible Papel del Incremento de la Temperatura.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some Ecological Factors Affecting the Input and Population Levels of Total and Faecal Coliforms and Salmonella in Twelve Mile Creek, Lake Ontario and Sewage Waters Near St. Catharines, Ontario. Supervisor: Dr. M. Helder. The present study was undertaken to investigate the role of some ecological factors on sewage-Dorne bacteria in waters near St. Catharines, Ontario. Total and faecal coliform levels and the presence of Salmonella were monitored for a period of a year along with determination of temperature, pH, dissolved oxygen, total dissolved solids, nitrate N, total phosphate P and ammonium N. Bacteriological tests for coliform analysis were done according to APHA Standard Methods by the membrane filtration technique. The grab sampling technique was employed for all sampling. Four sample sites were chosen in the Port Dalhousie beach area to determine what bacteriological or physical relationship the sites had to each other. The sample sites chosen were the sewage inflow to and the effluent from the St. Catharines (Port Dalhousie) Pollution Control Plant, Twelve Mile Creek below the sewage outfall and Lake Ontario at the Lakeside Park beach. The sewage outfall was located in Twelve Mile Creek, approximately 80 meters from the creek junction with the beach and piers on Lake Ontario. Twelve Mile Creek normally carried a large volume of water from the WeIland Canal which was diverted through the DeCew Generating Station located on the Niagara Escarpment. An additional sample site, which was thought to be free of industrial wastes, was chosen at Twenty Mile Creek, also in the Niagara Region of Ontarioo 3 There were marked variations in bacterial numbers at each site and between each site, but trends to lower_numbers were noted from the sewage inflow to Lake Ontario. Better correlations were noted between total and faecal coliform population levels and total phosphate P and ammonium N in Twenty Mile Creek. Other correlations were observed for other sample stations, however, these results also appeared to be random in nature. Salmonella isolations occurred more frequently during the winter and spring months when water temperatures were minimal at all sample stations except the sewage inflow. The frequency of Salmonella isolations appeared to be related to increased levels of total and faecal coli forms in the sewage effluent. However, no clear relationships were established in the other sample stations. Due to the presence of Salmonella and high levels of total and faecal coliform indicator organisms, the sanitary quality of Lake Ontario and Twelve Mile Creek at the sample sites seemed to be impaired over the major portion of the study period.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les poissons vivant au sein d’une rivière sont soumis à des variations circadiennes de température pouvant influencer la croissance, la digestion et le métabolisme standard. Les modèles bioénergétiques utilisant les fonctions métaboliques pour déterminer la croissance d’un poisson ont souvent été élaborés avec des poissons acclimatés à des températures constantes. Ces modèles pourraient sous-estimer l’énergie dépensée par un poisson soumis à des températures fluctuantes. En utilisant la respirométrie par débit intermittent, les objectifs de ce travail étaient : (1) de quantifier les différences entre les taux métaboliques standards de poissons acclimatés à une température constante (20.2 oC ± 0.5 oC) et à des fluctuations circadiennes de température (19.8 oC ± 2.0 oC; 19.5 oC ± 3.0 oC) et (2) comparer deux méthodologies pour calculer les taux métaboliques standards de poissons sujets aux fluctuations circadiennes de températures : respirométrie (a) en température constante ou (b) en température fluctuante. Les poissons acclimatés à des fluctuations circadiennes de température ont des taux métaboliques standards plus élevés que des poissons acclimatés à une température constante. À 20.2 oC ± 0.5 oC, les taux métabolique standards ont été de 25% à 32% plus bas pour des poissons maintenus à une température constante que pour des poissons gardés sous des fluctuations circadiennes de température. Les méthodologies utilisées pour estimer les taux métaboliques standards de poissons sujets aux fluctuations de température offrent des résultats similaires.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the results of performance monitoring under real winter weather conditions, controlled laboratory testing and computational fluid dynamics (CFD) analysis of a wall mounted ventilation air inlet heat convector. For real winter weather monitoring, the wall-mounted convector was installed in a laboratory room of the Engineering Building of the School of Construction Management and Engineering. Air and hot water temperatures and air speeds were measured at the entrance to the convector and in the room. The hot water temperature was controlled at 40, 60 and 80 °C. The monitoring results were later used as boundary conditions for a CFD simulation to investigate the air movement in the room. Controlled laboratory testing was conducted in laboratories at the University of Reading, UK and at Wetterstad Consultancy, Sweden. The results of the performance investigation showed that the system contributed greatly to the room heating, particularly at a water temperature of 80 °C. Also adequate fresh air was supplied to the room. Such a system is able to provide an energy efficient method of eliminating problems associated with cold winter draughts.