937 resultados para stream velocity
Resumo:
We report optical observations of the luminous blue variable (LBV) HR Carinae which show that the star has reached a visual minimum phase in 2009. More importantly, we detected absorptions due to Si lambda lambda 4088-4116. To match their observed line profiles from 2009 May, a high rotational velocity of nu(rot) similar or equal to 150 +/- 20 km s(-1) is needed (assuming an inclination angle of 30 degrees), implying that HR Car rotates at similar or equal to 0.88 +/- 0.2 of its critical velocity for breakup (nu(crit)). Our results suggest that fast rotation is typical in all strong-variable, bona fide galactic LBVs, which present S-Dor-type variability. Strong-variable LBVs are located in a well-defined region of the HR diagram during visual minimum (the ""LBV minimum instability strip""). We suggest this region corresponds to where nu(crit) is reached. To the left of this strip, a forbidden zone with nu(rot)/nu(crit) > 1 is present, explaining why no LBVs are detected in this zone. Since dormant/ex LBVs like P Cygni and HD 168625 have low nu(rot), we propose that LBVs can be separated into two groups: fast-rotating, strong-variable stars showing S-Dor cycles (such as AG Car and HR Car) and slow-rotating stars with much less variability (such as P Cygni and HD 168625). We speculate that supernova (SN) progenitors which had S-Dor cycles before exploding (such as in SN 2001ig, SN 2003bg, and SN 2005gj) could have been fast rotators. We suggest that the potential difficulty of fast-rotating Galactic LBVs to lose angular momentum is additional evidence that such stars could explode during the LBV phase.
Resumo:
We describe the reproductive period. fecundity, and average size at the onset of functional maturity of female Aegla franca, the northernmost distributed aeglid species. The reproductive period is markedly seasonal and takes place front May (austral mid-autumn) to August (late winter). Ovigerous females appear quite abruptly in the population by May, and this condition is observed in all adult females sampled regardless of their size. The average size at the onset of functional maturity in females, at which 50% of the females sampled during the reproductive period were considered adults, was 12.75 mm CL. The smallest post-ovigerous female measured 12.06 mm carapace length (CL). Mean fecundity (+/- S.D.) from 41 females bearing early and intermediate eggs was 129.1 +/- 32.2 and corresponded to a mean female CL of 14.11 mm. The elliptical-shaped eggs exhibited significant increase in size along the development stages. The third pair of pleopods bore higher number of eggs than the others. Compiled information regarding the reproductive period reported for aeglids revealed all increase in the breeding period length with latitude. The reproductive period tends to be shorter in localities under larger rainfall variation and smaller temperature variability than in sites with opposite climate conditions. Eggs tend to be fewer in number and larger in size towards lower latitudes. We present an hypothesis that stream water velocity might act as a major selective pressure during the early life history of fluvial aeglids with direct effect on the reproductive pattern.
Resumo:
Human activities that modify land cover can alter the structure and biogeochemistry of small streams but these effects are poorly known over large regions of the humid tropics where rates of forest clearing are high. We examined how conversion of Amazon lowland tropical forest to cattle pasture influenced the physical and chemical structure, organic matter stocks and N cycling of small streams. We combined a regional ground survey of small streams with an intensive study of nutrient cycling using (15)N additions in three representative streams: a second-order forest stream, a second-order pasture stream and a third-order pasture stream. These three streams were within several km of each other and on similar soils. Replacement of forest with pasture decreased stream habitat complexity by changing streams from run and pool channels with forest leaf detritus (50% cover) to grass-filled (63% cover) channel with runs of slow-moving water. In the survey, pasture streams consistently had lower concentrations of dissolved oxygen and nitrate (NO(3) (-)) compared with similar-sized forest streams. Stable isotope additions revealed that second-order pasture stream had a shorter NH(4) (+) uptake length, higher uptake rates into organic matter components and a shorter (15)NH(4) (+) residence time than the second-order forest stream or the third-order pasture stream. Nitrification was significant in the forest stream (19% of the added (15)NH(4) (+)) but not in the second-order pasture (0%) or third-order (6%) pasture stream. The forest stream retained 7% of added (15)N in organic matter compartments and exported 53% ((15)NH(4) (+) = 34%; (15)NO(3) (-) = 19%). In contrast, the second-order pasture stream retained 75% of added (15)N, predominantly in grasses (69%) and exported only 4% as (15)NH(4) (+). The fate of tracer (15)N in the third-order pasture stream more closely resembled that in the forest stream, with 5% of added N retained and 26% exported ((15)NH(4) (+) = 9%; (15)NO(3) (-) = 6%). These findings indicate that the widespread infilling by grass in small streams in areas deforested for pasture greatly increases the retention of inorganic N in the first- and second-order streams, which make up roughly three-fourths of total stream channel length in Amazon basin watersheds. The importance of this phenomenon and its effect on N transport to larger rivers across the larger areas of the Amazon Basin will depend on better evaluation of both the extent and the scale at which stream infilling by grass occurs, but our analysis suggests the phenomenon is widespread.
Resumo:
It has been suggested that muscle tension plays a major role in the activation of intracellular pathways for skeletal muscle hypertrophy via an increase in mechano growth factor (MGF) and other downstream targets. Eccentric exercise (EE) imposes a greater amount of tension on the active muscle. In particular, high-speed EE seems to exert an additional effect on muscle tension and, thus, on muscle hypertrophy. However, little is known about the effect of EE velocity on hypertrophy signaling. This study investigated the effect of acute EE-velocity manipulation on the Akt/mTORCI/p70(S6K) hypertrophy pathway. Twenty subjects were assigned to either a slow (20 degrees.s(-1); ES) or fast EE (210 degrees.s(-1); EF) group. Biopsies were taken from vastus lateralis at baseline (B), immediately after (T1), and 2 h after (T2) the completion of 5 sets of 8 repetitions of eccentric knee extensions. Akt, mTOR, and p70(S6K) total protein were similar between groups, and did not change postintervention. Further, Akt and p70(S6K) protein phosphorylation were higher at T2 than at B for ES and EF. MGF messenger RNA was similar between groups, and only significantly higher at T2 than at B in ES. The acute manipulation of EE velocity does not seem to differently influence intracellular hypertrophy signaling through the Akt/mTORCI/p70S6K pathway.
Effect of eccentric contraction velocity on muscle damage in repeated bouts of elbow flexor exercise
Resumo:
Eccentric exercise induces muscle damage, but controversy exists concerning the effect of contraction velocity on the magnitude of muscle damage, and little is known about the effect of contraction velocity on the repeated-bout effect. This study examined slow (60 degrees.s(-1)) and fast (180 degrees.s(-1)) velocity eccentric exercises for changes in indirect markers of muscle damage following 3 exercise bouts that were performed every 2 weeks. Fifteen young men were divided into 2 groups based on the velocity of eccentric exercise: 7 in the Ecc60 (60 degrees.s(-1)) group, and 8 in the Ecc180 (180 degrees.s(-1)) group. The exercise consisted of 30 maximal eccentric contractions of the elbow flexors at each velocity, in which the elbow joint was forcibly extended from 60 degrees to 180 degrees (full extension) on an isokinetic dynamometer. Changes in maximal voluntary isometric contraction strength, range of motion, muscle soreness, and plasma creatine kinase activity before and for 4 days after the exercise were compared in the 2 groups using a mixed-model analysis (group x bout x time). No significant differences between groups were evident for changes in any variables following exercise bouts; however, the changes were significantly smaller (p < 0.05) after the second and third bouts than after the first bout. These results indicate that the contraction velocity does not influence muscle damage or the repeated-bout effect.
Resumo:
The dynamic behavior of composite laminates is very complex because there are many concurrent phenomena during composite laminate failure under impact load. Fiber breakage, delaminations, matrix cracking, plastic deformations due to contact and large displacements are some effects which should be considered when a structure made from composite material is impacted by a foreign object. Thus, an investigation of the low velocity impact on laminated composite thin disks of epoxy resin reinforced by carbon fiber is presented. The influence of stacking sequence and energy impact was investigated using load-time histories, displacement-time histories and energy-time histories as well as images from NDE. Indentation tests results were compared to dynamic results, verifying the inertia effects when thin composite laminate was impacted by foreign object with low velocity. Finite element analysis (FEA) was developed, using Hill`s model and material models implemented by UMAT (User Material Subroutine) into software ABAQUS (TM), in order to simulate the failure mechanisms under indentation tests. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study is to quantify the mass transfer velocity using turbulence parameters from simultaneous measurements of oxygen concentration fields and velocity fields. The surface divergence model was considered in more detail, using data obtained for the lower range of beta (surface divergence). It is shown that the existing models that use the divergence concept furnish good predictions for the transfer velocity also for low values of beta, in the range of this study. Additionally, traditional conceptual models, such as the film model, the penetration-renewal model, and the large eddy model, were tested using the simultaneous information of concentration and velocity fields. It is shown that the film and the surface divergence models predicted the mass transfer velocity for all the range of the equipment Reynolds number used here. The velocity measurements showed viscosity effects close to the surface, which indicates that the surface was contaminated with some surfactant. Considering the results, this contamination can be considered slight for the mass transfer predictions. (C) 2009 American Institute of Chemical Engineers AIChE J, 56: 2005-2017; 2010
Resumo:
An investigation has been performed on the effect of liquid phase recirculation velocity and increasing influent concentration on the stability and efficiency of an anaerobic sequencing batch reactor (ASBR) containing granular biomass. The reactor treated 1.3 L synthetic wastewater at 30 degrees C in 6 h cycles. Initially the effect of recirculation velocity was investigated employing velocities of 5, 7 and 10 m/h and influent concentration of 500 mg COD/L. At these velocities, filtered sample organic matter removal efficiencies were 83, 85 and 84%, respectively. A first order kinetic model could also be fitted to the experimental organic matter concentration profiles. The kinetic parameter values of this model were 1.35, 2.36 and 1.00 h(-1) at the recirculation velocities of 5, 7 and 10 m/h, respectively. The recirculation velocity of 7 m/h was found to be the best operating strategy and this value was maintained while the influent concentration was altered in order to verify system efficiency and stability at increasing organic load. Influent concentration of 1000 mg COD/L resulted in filtered sample organic matter removal efficiency of 80%, and a first order kinetic parameter value of 1.14 h(-1), whereas the concentration of 1500 mg COD/L resulted in an efficiency of 82% and a kinetic parameter value of 1.31 h(-1). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper presents new experimental results of Vortex-Induced Vibration (VIV) on inclined cylinders. Models are mounted on a low damping air-bearing elastic base with one degree-of-freedom, constrained to oscillate only in the transverse direction to a free stream. The Reynolds number varied in the range 2000 less than or similar to Re less than or similar to 8000. New measurements on the dynamic response oscillations of inclined cylinders, due to VIV, are compared with previous experiments of a vertical cylinder. Models with circular and elliptical cross sections have been tested. The purpose of this work is to check the validity of the normal velocity correction of VIV studies of inclined structures. The results show that the reduced velocity range, in which the upper and lower branches of VIV occurs, is similar to the vertical cylinder case if the proper projected velocity is considered. Tests have been conducted to support this observation with inclinations up to 45 degrees. We have also observed that the amplitudes of oscillation of the inclined circular cylinder are comparable, but slightly lower than, to the amplitudes observed in the vertical cylinder experiments. Measured forces and added mass also show similar behaviour. However, for cases with an elliptical cylinder, the amplitudes of oscillation are considerably lower than those observed for a circular cylinder. This difference is explained by the higher added mass of the elliptical cylinder. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In high-velocity open channel flows, the measurements of air-water flow properties are complicated by the strong interactions between the flow turbulence and the entrained air. In the present study, an advanced signal processing of traditional single- and dual-tip conductivity probe signals is developed to provide further details on the air-water turbulent level, time and length scales. The technique is applied to turbulent open channel flows on a stepped chute conducted in a large-size facility with flow Reynolds numbers ranging from 3.8 E+5 to 7.1 E+5. The air water flow properties presented some basic characteristics that were qualitatively and quantitatively similar to previous skimming flow studies. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level at a macroscopic scale, and the auto- and cross-correlation functions at the microscopic level. New correlation analyses yielded a characterisation of the large eddies advecting the bubbles. Basic results included the integral turbulent length and time scales. The turbulent length scales characterised some measure of the size of large vortical structures advecting air bubbles in the skimming flows, and the data were closely related to the characteristic air-water depth Y90. In the spray region, present results highlighted the existence of an upper spray region for C > 0.95 to 0.97 in which the distributions of droplet chord sizes and integral advection scales presented some marked differences with the rest of the flow.
Resumo:
In high-velocity free-surface flows, air is continuously being trapped and released through the free-surface. Such high-velocity highly-aerated flows cannot be studied numerically because of the large number of relevant equations and parameters. Herein an advanced signal processing of traditional single- and dual-tip conductivity probes provides some new information on the air-water turbulent time and length scales. The technique is applied to turbulent open channel flows in a large-size facility. The auto- and cross-correlation analyses yield some characterisation of the large eddies advecting the bubbles. The transverse integral turbulent length and time scales are related to the step height: i.e., Lxy/h ~ 0.02 to 0.2, and T.sqrt(g/h) ~ 0.004 to 0.04. The results are irrespective of the Reynolds numbers. The present findings emphasise that turbulent dissipation by large-scale vortices is a significant process in the intermediate zone between the spray and bubbly flow regions (0.3 < C < 0.7). Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. The results are significant because they provide a picture general enough to be used to characterise the air-water flow field in prototype spillways.
Resumo:
In his study of the 'time of arrival' problem in the nonrelativistic quantum mechanics of a single particle, Allcock [1] noted that the direction of the probability flux vector is not necessarily the same as that of the mean momentum of a wave packet, even when the packet is composed entirely of plane waves with a common direction of momentum. Packets can be constructed, for example for a particle moving under a constant force, in which probability flows for a finite time in the opposite direction to the momentum. A similar phenomenon occurs for the Dirac electron. The maximum amount of probabilitiy backflow which can occur over a given time interval can be calculated in each case.
Resumo:
We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.
Resumo:
Gauging data are available from numerous streams throughout Australia, and these data provide a basis for historical analysis of geomorphic change in stream channels in response to both natural phenomena and human activities. We present a simple method for analysis of these data, and a briefcase study of an application to channel change in the Tully River, in the humid tropics of north Queensland. The analysis suggests that this channel has narrowed and deepened, rather than aggraded: channel aggradation was expected, given the intensification of land use in the catchment, upstream of the gauging station. Limitations of the method relate to the time periods over which stream gauging occurred; the spatial patterns of stream gauging sites; the quality and consistency of data collection; and the availability of concurrent land-use histories on which to base the interpretation of the channel changes.