939 resultados para stochastic systems
Resumo:
The fundamental controls on the initiation and development of gravel-dominated deposits (beaches and barriers) on paraglacial coasts are particle size and shape, sediment supply, storm wave activity (primarily runup), relative sea-level (RSL) change, and terrestrial basement structure (primarily as it affects accommodation space). This paper examines the stochastic basis for barrier organisation as shown by variation in gravel barrier architecture. We recognise punctuated self-organisation of barrier development that is disrupted by short phases of barrier instability. The latter results from positive feedback causing barrier breakdown when sediment supply is exhausted. We examine published typologies for gravel barriers and advocate a consolidated perspective using rate of RSL change and sediment supply. We also consider the temporal variation in controls on barrier development. These are examined in terms of a simple behavioural model (BARCH) for prograding gravel barrier architecture and its sensitivity to such controls. The nature of macroscale (102–103 years) gravel barrier development, including inherited characteristics that influence barrier genesis, as well as forcing from changing RSL, sediment supply, headland control and barrier inertia, is examined in the context of long-surviving barriers along the southern England coastline.
Resumo:
A nonperturbative nonlinear statistical approach is presented to describe turbulent magnetic systems embedded in a uniform mean magnetic field. A general formula in the form of an ordinary differential equation for magnetic field-line wandering (random walk) is derived. By considering the solution of this equation for different limits several new results are obtained. As an example, it is demonstrated that the stochastic wandering of magnetic field-lines in a two-component turbulence model leads to superdiffusive transport, contrary to an existing diffusive picture. The validity of quasilinear theory for field-line wandering is discussed, with respect to different turbulence geometry models, and previous diffusive results are shown to be deduced in appropriate limits.
Resumo:
Subspace monitoring has recently been proposed as a condition monitoring tool that requires considerably fewer variables to be analysed compared to dynamic principal component analysis (PCA). This paper analyses subspace monitoring in identifying and isolating fault conditions, which reveals that the existing work suffers from inherent limitations if complex fault senarios arise. Based on the assumption that the fault signature is deterministic while the monitored variables are stochastic, the paper introduces a regression-based reconstruction technique to overcome these limitations. The utility of the proposed fault identification and isolation method is shown using a simulation example and the analysis of experimental data from an industrial reactive distillation unit.
Resumo:
A Monte-Carlo simulation-based model has been constructed to assess a public health scheme involving mobile-volunteer cardiac First-Responders. The scheme being assessed aims to improve survival of Sudden-Cardiac-Arrest (SCA) patients, through reducing the time until administration of life-saving defibrillation treatment, with volunteers being paged to respond to possible SCA incidents alongside the Emergency Medical Services. The need for a model, for example, to assess the impact of the scheme in different geographical regions, was apparent upon collection of observational trial data (given it exhibited stochastic and spatial complexities). The simulation-based model developed has been validated and then used to assess the scheme's benefits in an alternative rural region (not a part of the original trial). These illustrative results conclude that the scheme may not be the most efficient use of National Health Service resources in this geographical region, thus demonstrating the importance and usefulness of simulation modelling in aiding decision making.
Resumo:
Extreme arid regions in the worlds' major deserts are typified by quartz pavement terrain. Cryptic hypolithic communities colonize the ventral surface of quartz rocks and this habitat is characterized by a relative lack of environmental and trophic complexity. Combined with readily identifiable major environmental stressors this provides a tractable model system for determining the relative role of stochastic and deterministic drivers in community assembly. Through analyzing an original, worldwide data set of 16S rRNA-gene defined bacterial communities from the most extreme deserts on the Earth, we show that functional assemblages within the communities were subject to different assembly influences. Null models applied to the photosynthetic assemblage revealed that stochastic processes exerted most effect on the assemblage, although the level of community dissimilarity varied between continents in a manner not always consistent with neutral models. The heterotrophic assemblages displayed signatures of niche processes across four continents, whereas in other cases they conformed to neutral predictions. Importantly, for continents where neutrality was either rejected or accepted, assembly drivers differed between the two functional groups. This study demonstrates that multi-trophic microbial systems may not be fully described by a single set of niche or neutral assembly rules and that stochasticity is likely a major determinant of such systems, with significant variation in the influence of these determinants on a global scale.
Resumo:
In recent years, the issue of life expectancy has become of utmost importance to pension providers, insurance companies, and government bodies in the developed world. Significant and consistent improvements in mortality rates and hence life expectancy have led to unprecedented increases in the cost of providing for older ages. This has resulted in an explosion of stochastic mortality models forecasting trends in mortality data to anticipate future life expectancy and hence quantify the costs of providing for future aging populations. Many stochastic models of mortality rates identify linear trends in mortality rates by time, age, and cohort and forecast these trends into the future by using standard statistical methods. These approaches rely on the assumption that structural breaks in the trend do not exist or do not have a significant impact on the mortality forecasts. Recent literature has started to question this assumption. In this paper, we carry out a comprehensive investigation of the presence or of structural breaks in a selection of leading mortality models. We find that structural breaks are present in the majority of cases. In particular, we find that allowing for structural break, where present, improves the forecast result significantly.
Resumo:
The test of modifications to quantum mechanics aimed at identifying the fundamental reasons behind the unobservability of quantum mechanical superpositions at the macroscale is a crucial goal of modern quantum mechanics. Within the context of collapse models, current proposals based on interferometric techniques for their falsification are far from the experimental state of the art. Here we discuss an alternative approach to the testing of quantum collapse models that, by bypassing the need for the preparation of quantum superposition states might help us addressing nonlinear stochastic mechanisms such as the one at the basis of the continuous spontaneous localization model.
Resumo:
Increasing installed capacities of wind power in an effort to achieve sustainable power systems for future generations pose problems for system operators. Volatility in generation volumes due to the adoption of stochastic wind power is increasing. Storage has been shown to act as a buffer for these stochastic energy sources, facilitating the integration of renewable energy into a historically inflexible power system. This paper examines peak and off peak benefits realised by installing a short term discharge storage unit in a system with a high penetration of wind power in 2020. A fully representative unit commitment and economic dispatch model is used to analyse two scenarios, one ‘with storage’ and one ‘without storage’. Key findings of this preliminary study show that wind curtailment can be reduced in the storage scenario, with a larger reduction in peak time ramping of gas generators is realised.
Resumo:
Nas últimas décadas, um grande número de processos têm sido descritos em termos de redes complexas. A teoria de redes complexas vem sendo utilizada com sucesso para descrever, modelar e caracterizar sistemas naturais, artificias e sociais, tais como ecossistemas, interações entre proteínas, a Internet, WWW, até mesmo as relações interpessoais na sociedade. Nesta tese de doutoramento apresentamos alguns modelos de agentes interagentes em redes complexas. Inicialmente, apresentamos uma breve introdução histórica (Capítulo 1), seguida de algumas noções básicas sobre redes complexas (Capítulo 2) e de alguns trabalhos e modelos mais relevantes a esta tese de doutoramento (Capítulo 3). Apresentamos, no Capítulo 4, o estudo de um modelo de dinâmica de opiniões, onde busca-se o consenso entre os agentes em uma população, seguido do estudo da evolução de agentes interagentes em um processo de ramificação espacialmente definido (Capítulo 5). No Capítulo 6 apresentamos um modelo de otimização de fluxos em rede e um estudo do surgimento de redes livres de escala a partir de um processo de otimização . Finalmente, no Capítulo 7, apresentamos nossas conclusões e perspectivas futuras.
Resumo:
The current regulatory framework for maintenance outage scheduling in distribution systems needs revision to face the challenges of future smart grids. In the smart grid context, generation units and the system operator perform new roles with different objectives, and an efficient coordination between them becomes necessary. In this paper, the distribution system operator (DSO) of a microgrid receives the proposals for shortterm (ST) planned outages from the generation and transmission side, and has to decide the final outage plans, which is mandatory for the members to follow. The framework is based on a coordination procedure between the DSO and other market players. This paper undertakes the challenge of optimization problem in a smart grid where the operator faces with uncertainty. The results show the effectiveness and applicability of the proposed regulatory framework in the modified IEEE 34- bus test system.
Resumo:
In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.
Resumo:
A stochastic programming approach is proposed in this paper for the development of offering strategies for a wind power producer. The optimization model is characterized by making the analysis of several scenarios and treating simultaneously two kinds of uncertainty: wind power and electricity market prices. The approach developed allows evaluating alternative production and offers strategies to submit to the electricity market with the ultimate goal of maximizing profits. An innovative comparative study is provided, where the imbalances are treated differently. Also, an application to two new realistic case studies is presented. Finally, conclusions are duly drawn.
Resumo:
This work evaluates the efficiency position of the health system of each OECD country. It identifies whether, or not, health systems changed in terms of quality and performance after the financial crisis. The health systems performance was calculated by fixed-effects estimator and by stochastic frontier analysis. The results suggest that many of those countries that the crisis affected the most are more efficient than the OECD average. In addition, some of those countries even managed to reach the top decile in the efficiency ranking. Finally, we analyze the stochastic frontier efficiency scores together with other health indicators to evaluate the health systems’ overall adjustments derived from the crisis.
Resumo:
This thesis Entitled Stochastic modelling and analysis.This thesis is divided into six chapters including this introductory chapter. In second chapter, we consider an (s,S) inventory model with service, reneging of customers and finite shortage of items.In the third chapter, we consider an (s,S) inventoiy system with retrial of customers. Arrival of customers forms a Poisson process with rate. When the inventory level depletes to s due to demands, an order for replenishment is placed.In Chapter 4, we analyze and compare three (s,S) inventory systems with positive service time and retrial of customers. In all these systems, arrivals of customers form a Poisson process and service times are exponentially distributed. In chapter 5, we analyze and compare three production inventory systems with positive service time and retrial of customers. In all these systems, arrivals of customers form a Poisson process and service times are exponentially distributed.In chapter 6, we consider a PH /PH /l inventory model with reneging of customers and finite shortage of items.
Resumo:
The thesis entitled Analysis of Some Stochastic Models in Inventories and Queues. This thesis is devoted to the study of some stochastic models in Inventories and Queues which are physically realizable, though complex. It contains a detailed analysis of the basic stochastic processes underlying these models. In this thesis, (s,S) inventory systems with nonidentically distributed interarrival demand times and random lead times, state dependent demands, varying ordering levels and perishable commodities with exponential life times have been studied. The queueing system of the type Ek/Ga,b/l with server vacations, service systems with single and batch services, queueing system with phase type arrival and service processes and finite capacity M/G/l queue when server going for vacation after serving a random number of customers are also analysed. The analogy between the queueing systems and inventory systems could be exploited in solving certain models. In vacation models, one important result is the stochastic decomposition property of the system size or waiting time. One can think of extending this to the transient case. In inventory theory, one can extend the present study to the case of multi-item, multi-echelon problems. The study of perishable inventory problem when the commodities have a general life time distribution would be a quite interesting problem. The analogy between the queueing systems and inventory systems could be exploited in solving certain models.