944 resultados para stereo vision,stereo matching,cuda,lisp,connection machine


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a novel template matching approach for the discrimination of handwritten and machine-printed text. We first pre-process the scanned document images by performing denoising, circles/lines exclusion and word-block level segmentation. We then align and match characters in a flexible sized gallery with the segmented regions, using parallelised normalised cross-correlation. The experimental results over the Pattern Recognition & Image Analysis Research Lab-Natural History Museum (PRImA-NHM) dataset show remarkably high robustness of the algorithm in classifying cluttered, occluded and noisy samples, in addition to those with significant high missing data. The algorithm, which gives 84.0% classification rate with false positive rate 0.16 over the dataset, does not require training samples and generates compelling results as opposed to the training-based approaches, which have used the same benchmark.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents an analysis of the behavior of some algorithms usually available in stereo correspondence literature, with full HD images (1920x1080 pixels) to establish, within the precision dilemma versus runtime applications which these methods can be better used. The images are obtained by a system composed of a stereo camera coupled to a computer via a capture board. The OpenCV library is used for computer vision operations and processing images involved. The algorithms discussed are an overall method of search for matching blocks with the Sum of the Absolute Value of the difference (Sum of Absolute Differences - SAD), a global technique based on cutting energy graph cuts, and a so-called matching technique semi -global. The criteria for analysis are processing time, the consumption of heap memory and the mean absolute error of disparity maps generated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Scientists planning to use underwater stereoscopic image technologies are often faced with numerous problems during the methodological implementations: commercial equipment is too expensive; the setup or calibration is too complex; or the imaging processing (i.e. measuring objects in the stereo-images) is too complicated to be performed without a time-consuming phase of training and evaluation. The present paper addresses some of these problems and describes a workflow for stereoscopic measurements for marine biologists. It also provides instructions on how to assemble an underwater stereo-photographic system with two digital consumer cameras and gives step-by-step guidelines for setting up the hardware. The second part details a software procedure to correct stereo-image pairs for lens distortions, which is especially important when using cameras with non-calibrated optical units. The final part presents a guide to the process of measuring the lengths (or distances) of objects in stereoscopic image pairs. To reveal the applicability and the restrictions of the described systems and to test the effects of different types of camera (a compact camera and an SLR type), experiments were performed to determine the precision and accuracy of two generic stereo-imaging units: a diver-operated system based on two Olympus Mju 1030SW compact cameras and a cable-connected observatory system based on two Canon 1100D SLR cameras. In the simplest setup without any correction for lens distortion, the low-budget Olympus Mju 1030SW system achieved mean accuracy errors (percentage deviation of a measurement from the object's real size) between 10.2 and -7.6% (overall mean value: -0.6%), depending on the size, orientation and distance of the measured object from the camera. With the single lens reflex (SLR) system, very similar values between 10.1% and -3.4% (overall mean value: -1.2%) were observed. Correction of the lens distortion significantly improved the mean accuracy errors of either system. Even more, system precision (spread of the accuracy) improved significantly in both systems. Neither the use of a wide-angle converter nor multiple reassembly of the system had a significant negative effect on the results. The study shows that underwater stereophotography, independent of the system, has a high potential for robust and non-destructive in situ sampling and can be used without prior specialist training.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Applicazione di algoritmi di stereo visione con differenti configurazioni con lo scopo di confrontare e valutare quale applicare ad una successiva implementazione su FPGA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tesi riguardante le metodologie di aggregazione di costi applicate alla visione stereo, incentrata in particolare sull'algoritmo box filtering.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: Stereopsis is the perception of depth based on retinal disparity. Global stereopsis depends on the process of random dot stimuli and local stereopsis depends on contour perception. The aim of this study was to correlate 3 stereopsis tests: TNO®, StereoTA B®, and Fly Stereo Acuity Test® and to study the sensitivity and correlation between them, using TNO® as the gold standard. Other variables as near convergence point, vergences, symptoms and optical correction were correlated with the 3 tests. Materials and Methods: Forty-nine students from Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), aged 18-26 years old were included. Results: The stereopsis mean (standard-deviation-SD) values in each test were: TNO® = 87.04” ±84.09”; FlyTest® = 38.18” ±34.59”; StereoTA B® = 124.89’’ ±137.38’’. About the coefficient of determination: TNO® and StereoTA B® with R2 = 0.6 e TNO® and FlyTest® with R2 =0.2. Pearson correlation coefficient shows a positive correlation between TNO® and StereoTA B® (r = 0.784 with α = 0.01). Phi coefficient shows a strong and positive association between TNO® and StereoTA B® (Φ = 0.848 with α = 0.01). In the ROC Curve, the StereoTA B® has an area under the curve bigger than the FlyTest® with a sensivity of 92.3% for 94.4% of specificity, so it means that the test is sensitive with a good discriminative power. Conclusion: We conclude that the use of Stereopsis tests to study global Stereopsis are an asset for clinical use. This type of test is more sensitive, revealing changes in Stereopsis when it is actually changed, unlike the test Stereopsis, which often indicates normal Stereopsis, camouflaging a Stereopsis change. We noted also that the StereoTA B ® is very sensitive and despite being a digital application, possessed good correlation with the TNO®.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis, we propose several advances in the numerical and computational algorithms that are used to determine tomographic estimates of physical parameters in the solar corona. We focus on methods for both global dynamic estimation of the coronal electron density and estimation of local transient phenomena, such as coronal mass ejections, from empirical observations acquired by instruments onboard the STEREO spacecraft. We present a first look at tomographic reconstructions of the solar corona from multiple points-of-view, which motivates the developments in this thesis. In particular, we propose a method for linear equality constrained state estimation that leads toward more physical global dynamic solar tomography estimates. We also present a formulation of the local static estimation problem, i.e., the tomographic estimation of local events and structures like coronal mass ejections, that couples the tomographic imaging problem to a phase field based level set method. This formulation will render feasible the 3D tomography of coronal mass ejections from limited observations. Finally, we develop a scalable algorithm for ray tracing dense meshes, which allows efficient computation of many of the tomographic projection matrices needed for the applications in this thesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis proposes a generic visual perception architecture for robotic clothes perception and manipulation. This proposed architecture is fully integrated with a stereo vision system and a dual-arm robot and is able to perform a number of autonomous laundering tasks. Clothes perception and manipulation is a novel research topic in robotics and has experienced rapid development in recent years. Compared to the task of perceiving and manipulating rigid objects, clothes perception and manipulation poses a greater challenge. This can be attributed to two reasons: firstly, deformable clothing requires precise (high-acuity) visual perception and dexterous manipulation; secondly, as clothing approximates a non-rigid 2-manifold in 3-space, that can adopt a quasi-infinite configuration space, the potential variability in the appearance of clothing items makes them difficult to understand, identify uniquely, and interact with by machine. From an applications perspective, and as part of EU CloPeMa project, the integrated visual perception architecture refines a pre-existing clothing manipulation pipeline by completing pre-wash clothes (category) sorting (using single-shot or interactive perception for garment categorisation and manipulation) and post-wash dual-arm flattening. To the best of the author’s knowledge, as investigated in this thesis, the autonomous clothing perception and manipulation solutions presented here were first proposed and reported by the author. All of the reported robot demonstrations in this work follow a perception-manipulation method- ology where visual and tactile feedback (in the form of surface wrinkledness captured by the high accuracy depth sensor i.e. CloPeMa stereo head or the predictive confidence modelled by Gaussian Processing) serve as the halting criteria in the flattening and sorting tasks, respectively. From scientific perspective, the proposed visual perception architecture addresses the above challenges by parsing and grouping 3D clothing configurations hierarchically from low-level curvatures, through mid-level surface shape representations (providing topological descriptions and 3D texture representations), to high-level semantic structures and statistical descriptions. A range of visual features such as Shape Index, Surface Topologies Analysis and Local Binary Patterns have been adapted within this work to parse clothing surfaces and textures and several novel features have been devised, including B-Spline Patches with Locality-Constrained Linear coding, and Topology Spatial Distance to describe and quantify generic landmarks (wrinkles and folds). The essence of this proposed architecture comprises 3D generic surface parsing and interpretation, which is critical to underpinning a number of laundering tasks and has the potential to be extended to other rigid and non-rigid object perception and manipulation tasks. The experimental results presented in this thesis demonstrate that: firstly, the proposed grasp- ing approach achieves on-average 84.7% accuracy; secondly, the proposed flattening approach is able to flatten towels, t-shirts and pants (shorts) within 9 iterations on-average; thirdly, the proposed clothes recognition pipeline can recognise clothes categories from highly wrinkled configurations and advances the state-of-the-art by 36% in terms of classification accuracy, achieving an 83.2% true-positive classification rate when discriminating between five categories of clothes; finally the Gaussian Process based interactive perception approach exhibits a substantial improvement over single-shot perception. Accordingly, this thesis has advanced the state-of-the-art of robot clothes perception and manipulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Strawberries harvested for processing as frozen fruits are currently de-calyxed manually in the field. This process requires the removal of the stem cap with green leaves (i.e. the calyx) and incurs many disadvantages when performed by hand. Not only does it necessitate the need to maintain cutting tool sanitation, but it also increases labor time and exposure of the de-capped strawberries before in-plant processing. This leads to labor inefficiency and decreased harvest yield. By moving the calyx removal process from the fields to the processing plants, this new practice would reduce field labor and improve management and logistics, while increasing annual yield. As labor prices continue to increase, the strawberry industry has shown great interest in the development and implementation of an automated calyx removal system. In response, this dissertation describes the design, operation, and performance of a full-scale automatic vision-guided intelligent de-calyxing (AVID) prototype machine. The AVID machine utilizes commercially available equipment to produce a relatively low cost automated de-calyxing system that can be retrofitted into existing food processing facilities. This dissertation is broken up into five sections. The first two sections include a machine overview and a 12-week processing plant pilot study. Results of the pilot study indicate the AVID machine is able to de-calyx grade-1-with-cap conical strawberries at roughly 66 percent output weight yield at a throughput of 10,000 pounds per hour. The remaining three sections describe in detail the three main components of the machine: a strawberry loading and orientation conveyor, a machine vision system for calyx identification, and a synchronized multi-waterjet knife calyx removal system. In short, the loading system utilizes rotational energy to orient conical strawberries. The machine vision system determines cut locations through RGB real-time feature extraction. The high-speed multi-waterjet knife system uses direct drive actuation to locate 30,000 psi cutting streams to precise coordinates for calyx removal. Based on the observations and studies performed within this dissertation, the AVID machine is seen to be a viable option for automated high-throughput strawberry calyx removal. A summary of future tasks and further improvements is discussed at the end.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Orthodontic miniscrews are commonly used to achieve absolute anchorage during tooth movement. One of the most frequent complications is screw loss as a result of root contact. Increased precision during the process of miniscrew insertion would help prevent screw loss and potential root damage, improving treatment outcomes. Stereo lithographic surgical guides have been commonly used for prosthetic implants to increase the precision of insertion. The objective of this paper was to describe the use of a stereolithographic surgical guide suitable for one-component orthodontic miniscrews based on cone beam computed tomography (CBCT) data and to evaluate implant placement accuracy. Materials and Methods: Acrylic splints were adapted to the dental arches of four patients, and six radiopaque reference points were filled with gutta-percha. The patients were submitted to CBCT while they wore the occlusal splint. Another series of images was captured with the splint alone. After superimposition and segmentation, miniscrew insertion was simulated using planning software that allowed the user to check the implant position in all planes and in three dimensions. In a rapid-prototyping machine, a stereolithographic guide was fabricated with metallic sleeves located at the insertion points to allow for three-dimensional control of the pilot bur. The surgical guide was worn during surgery. After implant insertion, each patient was submitted to CBCT a second time to verify the implant position and the accuracy of the placement of the miniscrews. Results: The average differences between the planned and inserted positions for the ten miniscrews were 0.86 mm at the coronal end, 0.71 mm at the center, and 0.87 mm at the apical tip. The average angular discrepancy was 1.76 degrees. Conclusions: The use of stereolithographic surgical guides based on CBCT data allows for accurate orthodontic mini screw insertion without damaging neighboring anatomic structures. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:860-865

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta dissertação aborda o problema de detecção e desvio de obstáculos "SAA- Sense And Avoid" em movimento para veículos aéreos. Em particular apresenta contribuições tendo em vista a obtenção de soluções para permitir a utilização de aeronaves não tripuladas em espaço aéreo não segregado e para aplicações civis. Estas contribuições caracterizam-se por: uma análise do problema de SAA em \UAV's - Unmmaned Aerial Vehicles\ civis; a definição do conceito e metodologia para o projecto deste tipo de sistemas; uma proposta de \ben- chmarking\ para o sistema SAA caracterizando um conjunto de "datasets\ adequados para a validação de métodos de detecção; respectiva validação experimental do processo e obtenção de "datasets"; a análise do estado da arte para a detecção de \Dim point features\ ; o projecto de uma arquitectura para uma solução de SAA incorporando a integração de compensação de \ego motion" e respectiva validação para um "dataset" recolhido. Tendo em vista a análise comparativa de diferentes métodos bem como a validação de soluções foi proposta a recolha de um conjunto de \datasets" de informação sensorial e de navegação. Para os mesmos foram definidos um conjunto de experiências e cenários experimentais. Foi projectado e implementado um setup experimental para a recolha dos \datasets" e realizadas experiências de recolha recorrendo a aeronaves tripuladas. O setup desenvolvido incorpora um sistema inercial de alta precisão, duas câmaras digitais sincronizadas (possibilitando análise de informa formação stereo) e um receptor GPS. As aeronaves alvo transportam um receptor GPS com logger incorporado permitindo a correlação espacial dos resultados de detecção. Com este sistema foram recolhidos dados referentes a cenários de aproximação com diferentes trajectórias e condições ambientais bem como incorporando movimento do dispositivo detector. O método proposto foi validado para os datasets recolhidos tendo-se verificado, numa análise preliminar, a detecção do obstáculo (avião ultraleve) em todas as frames para uma distância inferior a 3 km com taxas de sucesso na ordem dos 95% para distâncias entre os 3 e os 4 km. Os resultados apresentados permitem validar a arquitectura proposta para a solução do problema de SAA em veículos aéreos autónomos e abrem perspectivas muito promissoras para desenvolvimento futuro com forte impacto técnico-científico bem como sócio-economico. A incorporação de informa formação de \ego motion" permite fornecer um forte incremento em termos de desempenho.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores.Área de Especialização de Sistemas Autónomos

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal Cognition, V.6, pp. 259–267

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores - Ramo de Sistemas Autónomos