891 resultados para spray adjuvants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A narrow band proton bursts at energies of 1.6 +/- 0.08 MeV were observed when a water spray consisting of empty set(150 nm)-diameter droplets was irradiated by an ultrashort laser pulse of about 45 fs duration and at an intensity of 5 X 10(19) W/cm(2). The results are explained by a Coulomb explosion of sub-laser-wavelength droplets composed of two ion species. The laser prepulse plays an important role. By pre-evaporation of the droplets, its diameter is reduced so that the main pulse can interact with a smaller droplet, and this remaining bulk can be ionized to high states. In the case of water, the mixture of quite differently charged ions establishes an

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MeV negative oxygen ions are obtained from a water spray target irradiated by high intensity (5 x 10(19) W/cm(2)) and ultrashort (50 fs) laser pulses. Generation of negative ions is ascribed to electron-capture processes that the laser-accelerated high-energy positive ion experiences when it interacts with atoms in the spray. This mechanism implies the existence of a large number of MeV neutral oxygen atoms, which is consistent with indirect experimental evidence. (C) 2011 American Institute of Physics. [doi:10.1063/1.3622664]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indicator inks, previously shown to be capable of rapidly assessing photocatalytic activity via a novel photo-reductive mechanism, were simply applied via an aerosol spray onto commercially available pieces of Activ (TM) self-cleaning glass. Ink layers could be applied with high evenness of spread, with as little deviation as 5% upon UV-visible spectroscopic assessment of 25 equally distributed positions over a 10 cm x 10 cm glass cut. The inks were comprised of either a resazurin (Rz) or dichloroindophenol (DCIP) redox dye with a glycerol sacrificial electron donor in an aqueous hydroxyethyl cellulose (HEC) polymer media. The photo-reduction reaction under UVA light of a single spot was monitored by UV-vis spectroscopy and digital images attained from a flat-bed scanner in tandem for both inks. The photo-reduction of Rz ink underwent a two-step kinetic process, whereby the blue redox dye was initially reduced to a pink intermediate resorufin (Rf) and subsequently reduced to a bleached form of the dye. In contrast, a simple one-step kinetic process was observed for the reduction of the light blue redox dye DCIP to its bleached intermediates. Changes in red-green-blue colour extracted from digital images of the inks were inversely proportional to the changes seen at corresponding wavelengths via UV-visible absorption spectroscopy and wholly indicative of the reaction kinetics. The photocatalytic activity areas of cuts of Activ (TM) glass, 10 cm x 10 cm in size, were assessed using both Rz and DCIP indicator inks evenly sprayed over the films: firstly using UVA lamp light to activate the underlying Activ (TM) film (1.75 mW cm(-2)) and secondly under solar conditions (2.06 +/- 0.14 mW cm(-2)). The photo-reduction reactions were monitored solely by flat-bed digital scanning. Red-green-blue values of a generated 14 x 14 grid (196 positions) that covered the entire area of each film image were extracted using a Custom-built program entitled RGB Extractor(C). A homogenous degradation over the 196 positions analysed for both Rz (Red colour deviation = 19% UVA, 8% Solar: Green colour deviation = 17% UVA, 12% Solar) and DCIP (Red colour deviation = 22% UVA, 16% Solar) inks was seen in both UVA and solar experiments, demonstrating the consistency of the self-cleaning titania layer on Activ (TM). The method presented provides a good solution for the high-throughput photocatalytic screening of a number of homogenous photocatalytically active materials simultaneously or numerous positions on a single film; both useful in assessing the homogeneity of a film or determining the best combination of reaction components to produce the optimum performance photocatalytic film. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spray-congealing technique, a solvent-free drug encapsulation process, was successfully employed to obtain lipid-based particulate systems with high (10–20% w/w) protein loading. Bovine serum albumin (BSA) was utilised as model protein and three low melting lipids (glyceryl palmitostearate, trimirystin and tristearin) were employed as carriers. BSA-loaded lipid microparticles were characterised in terms of particle size, morphology and drug loading. The results showed that the microparticles exhibited a spherical shape, mean diameter in the range 150–300 µm and an encapsulation efficiency higher than 90%. Possible changes in the protein structure as a result of the manufacturing process was then investigated for the first time using UV spectrophotometry in fourth derivative mode and FT-Raman spectroscopy. The results suggested that the structural integrity of the protein was maintained within the particles. Thermal analysis indicated that the effect of protein on the thermal properties of the carriers could be detected. Spray-congealing could thus be considered a suitable technique to produce highly BSA-loaded microparticles preserving the structure of the protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spray-dried formulations offer an attractive delivery system for administration of drug encapsulated into liposomes to the lung, but can suffer from low encapsulation efficiency and poor aerodynamic properties. In this paper the effect of the concentration of the anti-adherent l-leucine was investigated in tandem with the protectants sucrose and trehalose. Two manufacturing methods were compared in terms of their ability to offer small liposomal size, low polydispersity and high encapsulation of the drug indometacin. Unexpectedly sucrose offered the best protection to the liposomes during the spray drying process, although formulations containing trehalose formed products with the best powder characteristics for pulmonary delivery; high glass transition values, fine powder fraction and yield. It was also found that l-leucine contributed positively to the characteristics of the powders, but that it should be used with care as above the optimum concentration of 0.5% (w/w) the size and polydispersity index increased significantly for both disaccharide formulations. The method of liposome preparation had no effect on the stability or encapsulation efficiency of spray-dried powders containing optimal protectant and anti-adherent. Using l-leucine at concentrations higher than the optimum level caused instability in the reconstituted liposomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The barrier imposed by lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria presents a significant challenge in treatment of these organisms with otherwise effective hydrophobic antibiotics. The absence of L-glycero-D-manno-heptose in the LPS molecule is associated with a dramatically increased bacterial susceptibility to hydrophobic antibiotics and thus enzymes in the ADP-heptose biosynthesis pathway are of significant interest. GmhA catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate, the first committed step in the formation of ADP-heptose. Here we report structures of GmhA from Escherichia coli and Pseudomonas aeruginosa in apo, substrate, and product-bound forms, which together suggest that GmhA adopts two distinct conformations during isomerization through reorganization of quaternary structure. Biochemical characterization of GmhA mutants, combined with in vivo analysis of LPS biosynthesis and novobiocin susceptibility, identifies key catalytic residues. We postulate GmhA acts through an enediol-intermediate isomerase mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid ethanol (C2H5OH) was used to generate a spray of sub-micron droplets. Sprays with different nozzle geometries have been tested and characterised using Mie scattering to find scaling properties and to generate droplets with different diameters within the spray. Nozzles having throat diameters of 470 µm and 560 µm showed generation of ethanol spray with droplet diameters of (180 ± 10) nm and (140 ± 10) nm, respectively. These investigations were motivated by the observation of copious negative ions from these target systems, e.g., negative oxygen and carbon ions measured from water and ethanol sprays irradiated with ultra-intense (5 × 1019 W/cm2), ultra short (40 fs) laser pulses. It is shown that the droplet diameter and the average atomic density of the spray have a significant effect on the numbers and energies of accelerated ions, both positive and negative. These targets open new possibilities for the creation of efficient and compact sources of different negative ion species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the development of spray dried polymer coated liposomes composed of soy phosphatidylcholine (SPC) and phospholipid dimyristoyl phosphatidylglycerol (DMPG) coated with alginate, chitosan or trimethyl chitosan (TMC), that are able to penetrate through the nasal mucosa and offer enhanced penetration over uncoated liposomes when delivered as a dry powder. All the liposome formulations, loaded with BSA as model antigen, were spray-dried to obtain powder size and liposome size in a suitable range for nasal delivery. Although coating resulted in some reduction in encapsulation efficiency, levels were still maintained between 60% and 69% and the structural integrity of the entrapped protein and its release characteristics were maintained. Coating with TMC gave the best product characteristics in terms of entrapment efficiency, glass transition (Tg) and mucoadhesive strength, while penetration of nasal mucosal tissue was very encouraging when these liposomes were administered as dispersions although improved results were observed for the dry powders

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During thermal spraying, hot particles impact on a colder substrate. This interaction of crystalline copper nanoparticles and copper substrate is modelled, using MD simulation. The quantitative results of the impacts at different velocities and temperatures are evaluated using a newly defined flattening aspect ratio. This ratio between the maximum diameter after the impact and the height of the splat increases with increasing Reynolds numbers until a critical value is reached. At higher Reynolds numbers the flattening aspect ratio decreases again, as the kinetic energy of the particle leads to increasing substrate temperature and, therefore, decreases the substrate resistance. Thus, the particle penetrates into the substrate and deforms less.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scenario of electron capture and loss has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.