933 resultados para sporadic breast cancer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In human breast cancer (HBC), as with many carcinoma systems, most matrix metalloproteinases (MMPs) are largely expressed by the stromal cells, whereas the tumour cells are relatively silent in MMP expression. To determine the tissue source of the most relevant MMPs, we xenografted HBC cell lines and HBC tissues into the mammary fat pad (MFP) or bone of immunocompromised mice and measured the expression of human and mouse MMP-2, -9, -11, -13, membrane-type-1 MMP (MT1-MMP), MT2-MMP and MT3-MMP by species-specific real-time quantitative RT-PCR. Our data confirm a stromal origin for most tumour-associated MMPs and indicate marked and consistent upregulation of stromal (mouse) MMP-13 and MT1-MMP in all xenografts studied, irrespective of implantation in the MFP or bone environments. In addition, we show increased expression of both human MMP-13 and human MT1-MMP by the MDA-MB-231 tumour cells grown in the MFP compared to in vitro production. MMP protein and activity data confirm the upregulation of MMP mRNA production and indicate an increase in the activated MMP-2 species as a result of tumour implantation. These data directly demonstrate tumour induction of MMP production by stromal cells in both the MFP and bone environments. These xenografts are a valuable means for examining in vivo production of MMPs and suggest that MMP-13 and MT1-MMP will be relevant targets for inhibiting breast cancer progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current understanding of the regulation of breast cancer cell proliferation and invasiveness by hormones and growth factors is reviewed. It has been shown that polypeptide growth factors are involved in hormone-independent breast cancer, and are sometimes oestrogen-regulated in hormone-responsive models. Basement-membrane invasiveness, relating to the metastatic potential of these cells, is also stimulated by oestrogen in hormone-dependent models, elevated in hormone-independent models, and is growth factor sensitive. Further understanding of the differential effects of growth factors on breast cancer cell proliferation and invasiveness should facilitate better therapeutic exploitation of regulation at this level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is characterized by hormonal regulation. The current article reviews the role of estrogen and polypeptide growth factors in control of proliferation and basement membrane invasion of breast cancer cells in vitro. The role of antiestrogens to regulate proliferation, invasion, and growth factor secretion is further highlighted. Finally, the use of in vitro cultures of breast cancer cells to model steps in the malignant progression of the disease is emphasized. The availability of hormone dependent and independent breast cancer cell lines should allow screening for better antiestrogens, antimetastatic drugs, and antagonists of local action of growth factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metastatic process requires changes in tumor cell adhesion properties, cell motility and remodeling of the extracellular matrix. The erbB2 proto-oncogene is overexpressed in approximately 30% of breast cancers and is a major prognostic parameter when present in invasive disease. A ligand for the erbB2 receptor has not yet been identified but it can be activated by heterodimerization with heregulin (HRG)-stimulated erbB3 and erbB4 receptors. The HRGs are a family of polypeptide growth factors that have been shown to play a role in embryogenesis, tumor formation, growth and differentiation of breast cancer cells. The erbB3 and erbB4 receptors are involved in transregulation of erbB2 signaling. The work presented here suggests biological roles for HRG including regulation of the actin cytoskeleton and induction of motility and invasion in breast cancer cells. HRG-expressing breast cancer cell lines are characterized by low erbB receptor levels and a high invasive and metastatic index, while those which overexpress erbB2 demonstrate minimal invasive potential in vitro and are non-tumorigenic in vivo. Treatment of the highly tumorigenic and metastatic HRG-expressing breast cancer cell line MDA-MB-231 with an HRG-neutralizing antibody significantly inhibited proliferation in culture and motility in the Boyden chamber assay. Addition of exogenous HRG to non-invasive erbB2 overexpressing cells (SKBr-3) at low concentrations induced formation of pseudopodia, enhanced phagocytic activity and increased chemomigration and invasion in the Boyden chamber assay. The specificity of the chemomigration response to HRG is demonstrated by inhibition with the anti-HRG neutralizing antibody. These results suggest that either HRG can act as an autocrine or paracrine ligand to promote the invasive behavior of breast cancer cells in vitro or thus may enhance the metastatic process in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the processes contributing to the progressive acquisition of the highly malignant phenotype in breast cancer are ovarian-independent growth, antioestrogen resistance and increased metastatic potential. We have previously observed that increased invasiveness and development of ovarian-independent growth occur independently. In an attempt to define the inter-relationships between these processes further, we have compared the phenotypes of ovarian-independent, invasive and antioestrogen-resistant sublines of the ovarian-dependent human breast cancer cell line MCF-7. Cells acquiring ovarian-independent growth can retain sensitivity to anti-oestrogens. One clone of MCF-7 cells selected for stable antioestrogen resistance has become non-tumorigenic but its invasive potential remains unaltered. Thus, acquisitions of some characteristics of the progressed phenotype can occur independently. This phenomenon of independent parameters in phenotypic progression could partly explain the considerable intra- and intertumour heterogeneity characteristic of breast tumours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have isolated a series of sublines of the hormone-dependent MCF-7 human breast cancer cell line after selection both in vivo and in vitro for growth in the presence of subphysiological concentrations of estrogens. These sublines represent a model system for study of the processes leading to hormonal autonomy. The cells form growing tumors in ovariectomized athymic nude mice in the absence of estrogen supplementation but retain some responsivity to estrogen as determined by stimulation of the rate of tumor growth in vivo and by induction of progesterone receptor. An ovarian-independent but hormone-responsive phenotype may occur early in the natural progression to hormone-independent and unresponsive growth in breast cancer. We observed no change in the affinity or decrease in the level of expression of estrogen receptors and progesterone receptors among the sublines and the parental cells. Epidermal growth factor receptors are not overexpressed in ovarian-independent cells. Thus, altered hormone receptor expression may be a late event in the acquisition of a hormone-independent and unresponsive phenotype. Sublines isolated by in vivo but not in vitro selection are more invasive than the parental cells both in vivo and across an artificial basement membrane in vitro. Thus, as yet unknown tumor-host interactions may be important in the development of an invasive phenotype. Furthermore, acquisition of the ovarian-independent and invasive phenotypes can occur independently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim To establish the suitability of multiplex tandem polymerase chain reaction (MT-PCR) for rapid identification of oestrogen receptor (ER) and Her-2 status using a single, formalin-fixed, paraffin-embedded (FFPE) breast tumour section. Methods Tissue sections from 29 breast tumours were analysed by immunohistochemistry (IHC) and fluorescence in situ hybridisation (FISH). RNA extracted from 10μm FFPE breast tumour sections from 24 of 29 tumours (14 ER positive and 5 Her-2 positive) was analysed by MT-PCR. After establishing a correlation between IHC and/or FISH and MT-PCR results, the ER/Her-2 status of a further 32 randomly selected, archival breast tumour specimens was established by MT-PCR in a blinded fashion, and compared to IHC/FISH results. Results MT-PCR levels of ER and Her-2 showed good concordance with IHC and FISH results. Furthermore, among the ER positive tumours, MT-PCR provided a quantitative score with a high dynamic range. Threshold values obtained from this data set applied to 32 archival tumour specimens showed that tumours strongly positive for ER and/or Her-2 expression were easily identified by MT-PCR. Conclusion MT-PCR can provide rapid, sensitive and cost-effective analysis of FFPE material and may prove useful as triage to identify patients suited to endocrine or trastuzumab (Herceptin) treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epithelial-to-mesenchymal transition (EMT) processes endow epithelial cells with enhanced migratory/invasive properties and are therefore likely to contribute to tumor invasion and metastatic spread. Because of the difficulty in following EMT processes in human tumors, we have developed and characterized an animal model with transplantable human breast tumor cells (MDA-MB-468) uniquely showing spontaneous EMT events to occur. Using vimentin as a marker of EMT, heterogeneity was revealed in the primary MDA-MB-468 xenografts with vimentin-negative and vimentin-positive areas, as also observed on clinical human invasive breast tumor specimens. Reverse transcriptase-PCR after microdissection of these populations from the xenografts revealed EMT traits in the vimentin-positive zones characterized by enhanced 'mesenchymal gene' expression (Snail, Slug and fibroblast-specific protein-1) and diminished expression of epithelial molecules (E-cadherin, ZO-3 and JAM-A). Circulating tumor cells (CTCs) were detected in the blood as soon as 8 days after s.c. injection, and lung metastases developed in all animals injected as examined by in vivo imaging analyses and histology. High levels of vimentin RNA were detected in CTCs by reverse transcriptase-quantitative PCR as well as, to a lesser extent, Snail and Slug RNA. Von Willebrand Factor/vimentin double immunostainings further showed that tumor cells in vascular tumoral emboli all expressed vimentin. Tumoral emboli in the lungs also expressed vimentin whereas macrometastases displayed heterogenous vimentin expression, as seen in the primary xenografts. In conclusion, our data uniquely demonstrate in an in vivo context that EMT occurs in the primary tumors, and associates with an enhanced ability to intravasate and generate CTCs. They further suggest that mesenchymal-to-epithelial phenomena occur in secondary organs, facilitating the metastatic growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review here the recently emerging relationship between epithelial-mesenchymal transition (EMT) and breast cancer stem cells (BCSC), and provide analyses of published data on human breast cancer cell lines, supporting their utility as a model for the EMT/BCSC state. Genome-wide transcriptional profiling of these cell lines has confirmed the existence of a subgroup with mesenchymal tendencies and enhanced invasive properties ('Basal B'/Mesenchymal), distinct from subgroups with either predominantly luminal ('Luminal') or mixed basal/luminal ('Basal A') features (Neve et al. Cancer Cell, 2006). A literature-derived EMT gene signature has shown specific enrichment within the Basal B subgroup of cell lines, consistent with their over-expression of various EMT transcriptional drivers. Basal B cell lines are found to resemble BCSC, being CD44highCD24low. Moreover, gene products that distinguish Basal B from Basal A and Luminal cell lines (Basal B Discriminators) showed close concordance with those that define BCSC isolated from clinical material, as reported by Shipitsin et al. (Cancer Cell, 2007). CD24 mRNA levels varied across Basal B cell lines, correlating with other Basal B Discriminators. Many gene products correlating with CD24 status in Basal B cell lines were also differentially expressed in isolated BCSC. These findings confirm and extend the importance of the cellular product of the EMT with Basal B cell lines, and illustrate the value of analysing these cell lines for new leads that may improve breast cancer outcomes. Gene products specific to Basal B cell lines may serve as tools for the detection, quantification, and analysis of BCSC/EMT attributes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endogenous ovarian estrogens and progestins appear to play a critical role in the development and progression of breast cancer. Local productions of growth factors probably also contribute to malignant proliferation, while production and activation of collagenolytic enzymes may be equally critical for local invasive processes. The current review focusses on characterization of growth factor-receptor systems operant in normal and malignant breast epithelium. In addition, the determinants of local invasion are reviewed: attachment, modality, and proteose secretion. Finally, data are discussed concerning the regulation of both proliferation and invasion by hormones and antihormonal agents in hormone-dependent breast cancer. The results suggest new potential pharmacologic targets to explore to suppress onset and progression of breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Expression of matrix metalloproteinase-2 (MMP-2), the 72-kd type IV collagenase/gelatinase, by cancer cells has been implicated in metastasis through cancer cell invasion of basement membranes mediated by degradation of collagen IV. However, the abundance of this latent proenzyme in normal tissues and fluids suggests that MMP-2 proenzyme utilization is limited by its physiological activation rather than expression alone. We previously reported activation of this proenzyme by normal and malignant fibroblastoid cells cultured on collagen I (vitrogen) gels. Purpose: Our purposes in this study were 1) to determine whether MMP-2 activation is restricted to the more invasive human breast cancer cell lines and 2) to localize the activating mechanism. Methods: Zymography was used to monitor MMP-2 activation through detection of latent MMP-2 (72 kd) and mature species of smaller molecular weight (59 or 62 kd). Human breast cancer cell lines cultured on plastic, vitrogen, and other matrices were thus screened for MMP- 2 activation. Collagen I-cultured cells were exposed to cycloheximide, a protein synthesis inhibitor, or to protease inhibitors to determine the nature of the MMP-2-activating mechanism. Triton X-114 (TX-114) detergent extracts from cells cultured on collagen I or plastic were incubated with latent MMP-2 and analyzed by zymography to localize the MMP-2 activator. Results: MMP-2 activation was only induced by collagen I culture in the more aggressive, highly invasive estrogen receptor-negative, vimentin-positive human breast cancer cell lines (Hs578T, MDA-MB-436, BT549, MDA-MB-231, MDA- MB-435, MCF-7(ADR)) and was independent of MMP-2 production. MMP-2 activation was detected in cells cultured on collagen I gels but not in those cultured on gelatin gels, Matrigel, or thin layers of collagen I or IV, gelatin, or fibronectin. Collagen-induced activation was specific for the enzyme species MMP-2, since MMP-9, the 92-kd type IV collagenase/gelatinase, was not activatable under similar conditions. MMP-2 activation was inhibited by cycloheximide and was sensitive to a metalloproteinase inhibitor but not to aspartyl, serine, or cysteinyl protease inhibitors. MMP-2 activation was detected in the hydrophobic, plasma membrane-enriched, TX-114 extracts from invasive collagen I-cultured cells. Conclusion: Collagen I-induced MMP-2 activation is restricted to highly invasive estrogen receptor-negative, vimentin-positive human breast cancer cell lines, is independent of MMP-2 production, and is associated with metastatic potential. Our findings are consistent with plasma membrane localization of the activator. Implications: The MMP-2 activation mechanism may represent a new target for diagnosis, prognosis, and treatment of human breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone sialoprotein (BSP) and osteopontin (OPN) are secreted glycoproteins with a conserved Arg-Gly-Asp (RGD) integrin-binding motif and are expressed predominantly in bone. The RGD tripeptide is commonly present in extracellular attachment proteins and has been shown to mediate the attachment of osteosarcoma cells and osteoclasts. To determine the origin and incidence of BSP and OPN mRNA expression in primary tumor, a cohort of archival, primary invasive breast carcinoma specimens was analyzed. BSP transcripts were detected in 65% and OPN transcripts in 77% of breast cancers examined. In general, BSP and OPN transcripts were detected in both invasive and in situ carcinoma components. The transcripts were not detected in surrounding stromal cells or in peritumoral macrophages. Despite its abundance in carcinomas, BSP expression was not detected in a panel of 11 human breast cancer cell lines (MCF-7, T47D, SK-Br-3, MDA-MB-453, MDA-MB- 231, MDA-MB-436, BT549, MCF-7(AOR), Hs578T, MDA-MB-435, and LCC15-MB) and OPN expression was detected only in two of these (MDA-MB-435 and LCC15-MB). To examine the possibility that expression of these genes was down-regulated in cell culture, several cell lines were grown as nude mouse xenografts in vivo; however, these tumors also failed to express BSP. OPN expression was identified in all cell lines grown as nude mouse xenografts. Our data suggest that in human primary breast tumors, the origin of BSP and OPN mRNA is predominantly the breast cancer cells and that expression of these transcripts is influenced by the tumor environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of αVβ3 integrin on MT1-MMP functionality was studied in human breast cancer cells of differing β3 integrin status. Overexpression of β3 integrin caused increased cell surface expression of αV integrin and increased cellular adhesion to extracellular matrix (ECM) substrates in BT-549, MDA-MB-231 and MCF-7 cells. β3 integrin expression also enhanced the migration of breast cancer cells on ECM substrates and enhanced collagen gel contraction. In vivo, αVβ3 cooperated with MT1-MMP to increase the growth of MCF-7 cells after orthotopic inoculation in immunocompromised mice, but had no influence on in vitro proliferation. Despite these stimulatory effects, overexpression of β3 integrin suppressed the type I collagen (Col I) induced MMP-2 activation in all breast cancer cell lines analyzed. This was also evident in extracts from the MCF-7 tumors in vivo, where MMP-2 activation was stimulated by MT1-MMP transfection, but attenuated with β3 integrin expression. Although our studies confirm important biological effects of αVβ3 integrin on enhancing cell adhesion and migration, ECM remodeling and tumor growth, β3 integrin caused reduced MMP-2 activation in response to Col I in vitro, which appears to be physiologically relevant, as it was also seen in tumor xenografts in vivo. The reduction of MMP-2 activation (and thus MT1-MMP activity) by αVβ3 in response to Col I may be important in scenarios where cells which are activated for matrix degradation need to preserve some pericellular collagen, perhaps as a substrate for cell adhesion and migration, thus maintaining a balanced level of proteolysis required for efficient tumor growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BRC repeat is a structural motif in the tumor suppressor BRCA2 (breast cancer type 2 susceptibility protein), which promotes homologous recombination (HR) by regulating RAD51 recombinase activity. To date, the BRC repeat has not been observed in other proteins, so that its role in HR is inferred only in the context of BRCA2. Here, we identified a BRC repeat variant, named BRCv, in the RECQL5 helicase, which possesses anti-recombinase activity in vitro and suppresses HR and promotes cellular resistance to camptothecin-induced replication stress in vivo. RECQL5-BRCv interacted with RAD51 through two conserved motifs similar to those in the BRCA2-BRC repeat. Mutations of either motif compromised functions of RECQL5, including association with RAD51, inhibition of RAD51-mediated D-loop formation, suppression of sister chromatid exchange, and resistance to camptothecin-induced replication stress. Potential BRCvs were also found in other HR regulatory proteins, including Srs2 and Sgs1, which possess anti-recombinase activities similar to that of RECQL5. A point mutation in the predicted Srs2-BRCv disrupted the ability of the protein to bind RAD51 and to inhibit D-loop formation. Thus, BRC is a common RAD51 interaction module that can be utilized by different proteins to either promote HR, as in the case of BRCA2, or to suppress HR, as in RECQL5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein arginine methyltransferases (PRMTs) methylate arginine residues on histones and target transcription factors that play critical roles in many cellular processes, including gene transcription, mRNA splicing, proliferation, and differentiation. Recent studies have linked PRMT-dependent epigenetic marks and modifications to carcinogenesis and metastasis in cancer. However, the role of PRMT2-dependent signaling in breast cancer remains obscure. We demonstrate PRMT2 mRNA expression was significantly decreased in breast cancer relative to normal breast. Gene expression profiling, Ingenuity and protein-protein interaction network analysis after PRMT2-short interfering RNA transfection into MCF-7 cells, revealed that PRMT2-dependent gene expression is involved in cell-cycle regulation and checkpoint control, chromosomal instability, DNA repair, and carcinogenesis. For example, PRMT2 depletion achieved the following: 1) increased p21 and decreased cyclinD1 expression in (several) breast cancer cell lines, 2) decreased cell migration, 3) induced an increase in nucleotide excision repair and homologous recombination DNA repair, and 4) increased the probability of distance metastasis free survival (DMFS). The expression of PRMT2 and retinoid-related orphan receptor-γ (RORγ) is inversely correlated in estrogen receptor-positive breast cancer and increased RORγ expression increases DMFS. Furthermore, we found decreased expression of the PRMT2-dependent signature is significantly associated with increased probability of DMFS. Finally, weighted gene coexpression network analysis demonstrated a significant correlation between PRMT2-dependent genes and cell-cycle checkpoint, kinetochore, and DNA repair circuits. Strikingly, these PRMT2-dependent circuits are correlated with pan-cancer metagene signatures associated with epithelial-mesenchymal transition and chromosomal instability. This study demonstrates the role and significant correlation between a histone methyltransferase (PRMT2)-dependent signature, RORγ, the cell-cycle regulation, DNA repair circuits, and breast cancer survival outcomes.