768 resultados para social network data
Resumo:
The birth of a baby is a significant event for women and their families, with the event being influenced by the prevailing social and cultural context. Historically, women throughout the world have given birth at home assisted by other women who helped them cope with the stress of labour and birth. In the middle of the twentieth century, the togetherness, caring and support that were provided within the social and cultural context of childbirth began to change; women in most developed countries, and to some extent in developing countries, laboured and gave birth in institutions that isolated them from the support of family and friends. This practice is referred to as the medical model of childbirth and, over time, birthing within this model has come to be viewed by women as a dehumanising experience. In an attempt to secure a more supportive experience, women began to demand the presence of a supportive companion; namely their partner. This event became the catalyst for a number of studies focusing on different types of support providers and their contribution to the phenomenon of social support during labour. More recently, it has become a common practice for some women to be supported during labour by a number of people from their social network. However, research on the influence of such supportive people on women’s experience of labour and birth and on birth outcomes is scarce. The aim of this study is to examine the influence of various support arrangements from a woman’s family and social network on her experience of labour and birth and on birth outcomes. The mixed-method study was conducted to answer three research questions: 1. Do women with more than one support person present during labour and birth have similar perceptions and experiences of support compared to women with one support person? 2. Do women with more than one support person present during labour and birth have similar birth outcomes compared to women with one support person? 3. Do women with different types of support providers during labour and birth have similar birth outcomes? Methods Phase one of this study developed, pilot tested and administered a newly developed instrument designed to measure women’s perceptions of supportive behaviours provided during labour. Specific birth outcome data were extracted from the medical records. Phase two consisted of in-depth interviews with a sample of women who had completed the survey. Results: The results identified a statistically significant relationship between women’s perceptions of social support and the number of support providers: women supported by one person only rated the supportive behaviours of that person more highly compared to women who were supported by a number of people. The results also identified that women supported by one person used less analgesia. An additional qualitative finding was that some women sacrificed the support of female relatives at the request of their partners. Conclusion: By using a mixed-method approach, this study found that women were selective in their choice of support providers, as they chose individuals with whom they had an enduring affectionate attachment. Women place more emphasis on a support person’s ability to fulfil their attachment needs of close proximity and a sense of security and safety, rather than their ability to provide the expected functional supportive behaviours.
Resumo:
Management scholars and practitioners emphasize the importance of the size and diversity of a knowledge worker's social network. Constraints on knowledge workers’ time and energy suggest that more is not always better. Further, why and how larger networks contribute to valuable outcomes deserves further understanding. In this study, we offer hypotheses to shed insight on the question of the diminishing returns of large networks and the specific form of network diversity that may contribute to innovative performance among knowledge workers. We tested our hypotheses using data collected from 93 R&D engineers in a Sino-German automobile electronics company located in China. Study findings identified an inflection point, confirming our hypothesis that the size of the knowledge worker's egocentric network has an inverted U-shaped effect on job performance. We further demonstrate that network dispersion richness (the number of cohorts that the focal employee has connections to) rather than network dispersion evenness (equal distribution of ties across the cohorts) has more influence on the knowledge worker's job performance. Additionally, we found that the curvilinear effect of network size is fully mediated by network dispersion richness. Implications for future research on social networks in China and Western contexts are discussed.
Resumo:
Recent management research has evidenced the significance of organizational social networks, and communication is believed to impact the interpersonal relationships. However, we have little knowledge on how communication affects organizational social networks. This paper studies the dynamics between organizational communication patterns and the growth of organizational social networks. We propose an organizational social network growth model, and then collect empirical data to test model validity. The simulation results agree well with the empirical data. The results of simulation experiments enrich our knowledge on communication with the findings that organizational management practices that discourage employees from communicating within and across group boundaries have disparate and significant negative effect on the social network’s density, scalar assortativity and discrete assortativity, each of which correlates with the organization’s performance. These findings also suggest concrete measures for management to construct and develop the organizational social network.
Resumo:
Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Data reliability issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. Participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data reliability has become an urgent demand. This study aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we propose to design a reputation framework to enhance data reliability and also investigate some critical elements that should be aware of during developing and designing new reputation systems.
Resumo:
Collaboration between faculty and librarians is an important topic of discussion and research among academic librarians. These partnerships between faculty and librarians are vital for enabling students to become lifelong learners through their information literacy education. This research developed an understanding of academic collaborators by analyzing a community college faculty's teaching social networks. A teaching social network, an original term generated in this study, is comprised of communications that influence faculty when they design and deliver their courses. The communication may be formal (e.g., through scholarly journals and professional development activities) and informal (e.g., through personal communication) through their network elements. Examples of the elements of a teaching social network may be department faculty, administration, librarians, professional development, and students. This research asked 'What is the nature of faculty's teaching social networks and what are the implications for librarians?' This study moves forward the existing research on collaboration, information literacy, and social network analysis. It provides both faculty and librarians with added insight into their existing and potential relationships. This research was undertaken using mixed methods. Social network analysis was the quantitative data collection methodology and the interview method was the qualitative technique. For the social network analysis data, a survey was sent to full-time faculty at Las Positas College, a community college, in California. The survey gathered the data and described the teaching social networks for faculty with respect to their teaching methods and content taught. Semi-structured interviews were conducted following the survey with a sub-set of survey respondents to understand why specific elements were included in their teaching social networks and to learn of ways for librarians to become an integral part of the teaching social networks. The majority of the faculty respondents were moderately influenced by the elements of their network except the majority of the potentials were weakly influenced by the elements in their network in their content taught. The elements with the most influence on both teaching methods and content taught were students, department faculty, professional development, and former graduate professors and coursework. The elements with the least influence on both aspects were public or academic librarians, and social media. The most popular roles for the elements were conversations about teaching, sharing ideas, tips for teaching, insights into teaching, suggestions for ways of teaching, and how to engage students. Librarians' weakly influenced faculty in their teaching methods and their content taught. The motivating factors for collaboration with librarians were that students learned how to research, students' research projects improved, faculty saved time by having librarians provide the instruction to students, and faculty built strong working relationships with librarians. The challenges of collaborating with librarians were inadequate teaching techniques used when librarians taught research orientations and lack of time. Ways librarians can be more integral in faculty's teaching social networks included: more workshops for faculty, more proactive interaction with faculty, and more one-on-one training sessions for faculty. Some of the recommendations for the librarians from this study were develop a strong rapport with faculty, librarians should build their services in information literacy from the point of view of the faculty instead of from the librarian perspective, use staff development funding to attend conferences and workshops to improve their teaching, develop more training sessions for faculty, increase marketing efforts of the librarian's instructional services, and seek grant opportunities to increase funding for the library. In addition, librarians and faculty should review the definitions of information literacy and move from a skills based interpretation to a learning process.
Resumo:
Large communities built around social media on the Internet offer an opportunity to augment analytical customer relationship management (CRM) strategies. The purpose of this paper is to provide direction to advance the conceptual design of business intelligence (BI) systems for implementing CRM strategies. After introducing social CRM and social BI as emerging fields of research, the authors match CRM strategies with a re-engineered conceptual data model of Facebook in order to illustrate the strategic value of these data. Subsequently, the authors design a multi-dimensional data model for social BI and demonstrate its applicability by designing management reports in a retail scenario. Building on the service blueprinting framework, the authors propose a structured research agenda for the emerging field of social BI.
Resumo:
Online dating websites enable a specific form of social networking and their efficiency can be increased by supporting proactive recommendations based on participants' preferences with the use of data mining. This research develops two-way recommendation methods for people-to-people recommendation for large online social networks such as online dating networks. This research discovers the characteristics of the online dating networks and utilises these characteristics in developing efficient people-to-people recommendation methods. Methods developed support improved recommendation accuracy, can handle data sparsity that often comes with large data sets and are scalable for handling online networks with a large number of users.
Resumo:
Arid systems are markedly different from non-arid systems. This distinctiveness extends to arid-social networks, by which we mean social networks which are influenced by the suite of factors driving arid and semi-arid regions. Neither the process of how aridity interacts with social structure, nor what happens as a result of this interaction, is adequately understood. This paper postulates three relative characteristics which make arid-social networks distinct: that they are tightly bound, are hierarchical in structure and, hence, prone to power abuses, and contain a relatively higher proportion of weak links, making them reactive to crisis. These ideas were modified from workshop discussions during 2006. Although they are neither tested nor presented as strong beliefs, they are based on the anecdotal observations of arid-system scientists with many years of experience. This paper does not test the ideas, but rather examines them in the context of five arid-social network case studies with the aim of hypotheses building. Our cases are networks related to pastoralism, Aboriginal outstations, the ‘Far West Coast Aboriginal Enterprise Network’ and natural resources in both the Lake-Eyre basin and the Murray–Darling catchment. Our cases highlight that (1) social networks do not have clear boundaries, and that how participants perceive their network boundaries may differ from what network data imply, (2) although network structures are important determinants of system behaviour, the role of participants as individuals is still pivotal, (3) and while in certain arid cases weak links are engaged in crisis, the exact structure of all weak links in terms of how they place participants in relation to other communities is what matters.
Resumo:
Twitter is the focus of much research attention, both in traditional academic circles and in commercial market and media research, as analytics give increasing insight into the performance of the platform in areas as diverse as political communication, crisis management, television audiencing and other industries. While methods for tracking Twitter keywords and hashtags have developed apace and are well documented, the make-up of the Twitter user base and its evolution over time have been less understood to date. Recent research efforts have taken advantage of functionality provided by Twitter's Application Programming Interface to develop methodologies to extract information that allows us to understand the growth of Twitter, its geographic spread and the processes by which particular Twitter users have attracted followers. From politicians to sporting teams, and from YouTube personalities to reality television stars, this technique enables us to gain an understanding of what prompts users to follow others on Twitter. This article outlines how we came upon this approach, describes the method we adopted to produce accession graphs and discusses their use in Twitter research. It also addresses the wider ethical implications of social network analytics, particularly in the context of a detailed study of the Twitter user base.
Resumo:
This study explores the professional development strategies of digital content professionals in Australian micro businesses. This thesis presents the argument that as these professionals are working in cutting edge creative fields where digital technology drives ongoing change, formal education experiences may be less important than for other professionals, and that specific types of online and face-to-face socially mediated informal learning strategies may be critical to currency. This thesis documents the findings of a broad survey of industry professionals' learning needs and development strategies, in conjunction with rich data from in-depth interviews and social network analyses.
Resumo:
The purpose of this study was to explore associations between forms of social support and levels of psychological distress during pregnancy. Methods: A cross-sectional analysis of 2,743 pregnant women from south-east Queensland, Australia, was conducted utilising data collected between 2007-2011 as part of the Environments for Healthy Living (EFHL) project, Griffith University. Psychological distress was measured using the Kessler 6; social support was measured using the following four factors: living with a partner, living with parents or in-laws, self-perceived social network, and area satisfaction. Data were analysed using an ordered logistic regression model controlling for a range of socio-demographic factors. Results: There was an inverse association between self-perceived strength of social networks and levels of psychological distress (OR = 0.77; 95%CI: 0.70, 0.85) and between area satisfaction and levels of psychological distress (OR = 0.77; 95%CI: 0.69, 0.87). There was a direct association between living with parents or in-laws and levels of psychological distress (OR = 1.50; 95%CI: 1.16, 1.96). There was no statistically significant association between living with a partner and the level of psychological distress of the pregnant woman after accounting for household income. Conclusion: Living with parents or in-laws is a strong marker for psychological distress. Strategies aiming to build social support networks for women during pregnancy have the potential to provide a significant benefit. Policies promoting stable family relationships and networks through community development could also be effective in promoting the welfare of pregnant women.
Resumo:
This chapter discusses the methodological aspects and empirical findings of a large-scale, funded project investigating public communication through social media in Australia. The project concentrates on Twitter, but we approach it as representative of broader current trends toward the integration of large datasets and computational methods into media and communication studies in general, and social media scholarship in particular. The research discussed in this chapter aims to empirically describe networks of affiliation and interest in the Australian Twittersphere, while reflecting on the methodological implications and imperatives of ‘big data’ in the humanities. Using custom network crawling technology, we have conducted a snowball crawl of Twitter accounts operated by Australian users to identify more than one million users and their follower/followee relationships, and have mapped their interconnections. In itself, the map provides an overview of the major clusters of densely interlinked users, largely centred on shared topics of interest (from politics through arts to sport) and/or sociodemographic factors (geographic origins, age groups). Our map of the Twittersphere is the first of its kind for the Australian part of the global Twitter network, and also provides a first independent and scholarly estimation of the size of the total Australian Twitter population. In combination with our investigation of participation patterns in specific thematic hashtags, the map also enables us to examine which areas of the underlying follower/followee network are activated in the discussion of specific current topics – allowing new insights into the extent to which particular topics and issues are of interest to specialised niches or to the Australian public more broadly. Specifically, we examine the Twittersphere footprint of dedicated political discussion, under the #auspol hashtag, and compare it with the heightened, broader interest in Australian politics during election campaigns, using #ausvotes; we explore the different patterns of Twitter activity across the map for major television events (the popular competitive cooking show #masterchef, the British #royalwedding, and the annual #stateoforigin Rugby League sporting contest); and we investigate the circulation of links to the articles published by a number of major Australian news organisations across the network. Such analysis, which combines the ‘big data’-informed map and a close reading of individual communicative phenomena, makes it possible to trace the dynamic formation and dissolution of issue publics against the backdrop of longer-term network connections, and the circulation of information across these follower/followee links. Such research sheds light on the communicative dynamics of Twitter as a space for mediated social interaction. Our work demonstrates the possibilities inherent in the current ‘computational turn’ (Berry, 2010) in the digital humanities, as well as adding to the development and critical examination of methodologies for dealing with ‘big data’ (boyd and Crawford, 2011). Out tools and methods for doing Twitter research, released under Creative Commons licences through our project Website, provide the basis for replicable and verifiable digital humanities research on the processes of public communication which take place through this important new social network.
Resumo:
An increasing number of organizations have installed enterprise social media (ESM) platforms to allow employees to collaborate, work independently, and to innovate more easily. While research has started to explain how such technologies can lead to improved collaboration and productivity, their role in assisting employees in innovation processes remains unclear. In our research-in-progress we examine the case of a global retail organization that adopted ESM for all employees with the view to foster employee-driven innovation. We report on our on-going data collection and analysis, in which we focus on the salient mechanisms and contingency factors why ESM under some conditions facilitates employee-driven innovation and why under some conditions it does not. We report on on-going data collection, data analysis strategies and emergent findings, and conclude with a brief outlook on our future research strategies.
Resumo:
Digital media have contributed to significant disruptions in the business of audience measurement. Television broadcasters have long relied on simple and authoritative measures of who is watching what. The demand for ratings data, as a common currency in transactions involving advertising and program content, will likely remain, but accompanying measurements of audience engagement with media content would also be of value. Today's media environment increasingly includes social media and second-screen use, providing a data trail that affords an opportunity to measure engagement. If the limitations of using social media to indicate audience engagement can be overcome, social media use may allow for quantitative and qualitative measures of engagement. Raw social media data must be contextualized, and it is suggested that tools used by sports analysts be incorporated to do so. Inspired by baseball's Sabremetrics, the authors propose Telemetrics in an attempt to separate actual performance from contextual factors. Telemetrics facilitates measuring audience activity in a manner controlling for factors such as time slot, network, and so forth. It potentially allows both descriptive and predictive measures of engagement.
Resumo:
Network data packet capture and replay capabilities are basic requirements for forensic analysis of faults and security-related anomalies, as well as for testing and development. Cyber-physical networks, in which data packets are used to monitor and control physical devices, must operate within strict timing constraints, in order to match the hardware devices' characteristics. Standard network monitoring tools are unsuitable for such systems because they cannot guarantee to capture all data packets, may introduce their own traffic into the network, and cannot reliably reproduce the original timing of data packets. Here we present a high-speed network forensics tool specifically designed for capturing and replaying data traffic in Supervisory Control and Data Acquisition systems. Unlike general-purpose "packet capture" tools it does not affect the observed network's data traffic and guarantees that the original packet ordering is preserved. Most importantly, it allows replay of network traffic precisely matching its original timing. The tool was implemented by developing novel user interface and back-end software for a special-purpose network interface card. Experimental results show a clear improvement in data capture and replay capabilities over standard network monitoring methods and general-purpose forensics solutions.