912 resultados para smart antennas
Resumo:
Low Voltage (LV) electricity distribution grid operations can be improved through a combination of new smart metering systems' capabilities based on real time Power Line Communications (PLC) and LV grid topology mapping. This paper presents two novel contributions. The first one is a new methodology developed for smart metering PLC network monitoring and analysis. It can be used to obtain relevant information from the grid, thus adding value to existing smart metering deployments and facilitating utility operational activities. A second contribution describes grid conditioning used to obtain LV feeder and phase identification of all connected smart electric meters. Real time availability of such information may help utilities with grid planning, fault location and a more accurate point of supply management.
Resumo:
The smart grid is a highly complex system that is being formed from the traditional power grid, adding new and sophisticated communication and control devices. This will enable integrating new elements for distributed power generation and also achieving an increasingly automated operation so for actions of the utilities as for customers. In order to model such systems a bottom-up method is followed, using only a few basic elements which are structured into two layers: a physical layer for the electrical power transmission, and one logical layer for element communication. A simple case study is presented to analyse the possibilities of simulation. It shows a microgrid model with dynamic load management and an integrated approach that can process both electrical and communication flows.
Resumo:
This is an Author's Accepted Manuscript of an article published in “Emergence: Complexity and Organization”, 15 (2), pp. 14-22 (2013), copyright Taylor & Francis.
Resumo:
ICINCO 2010
Resumo:
More and more piezoelectric materials and structures have been used for structure control in aviation and aerospace industry. More efficient and convenient computation method for large complex structure with piezoelectric actuation devices is required. A load simulation method of piezoelectric actuation is presented in this paper. By this method, the freedom degree of finite element simulation is significantly reduced, the difficulty in defining in-plane voltage for multi-layers piezoelectric composite is overcome and the transfer computation between material main direction and the element main direction is simplified. The concept of simulation load is comprehensible and suitable for engineers of structure strength in shape and vibration control, thereby is valuable for promoting the application of piezoelectric material and structures in practical aviation and aerospace fields.
Resumo:
110 p.