987 resultados para small-delay defects
Resumo:
Objectives: Pneumothorax is a frequent complication during mechanical ventilation. Electrical impedance tomography (EIT) is a noninvasive tool that allows real-time imaging of regional ventilation. The purpose of this study was to 1) identify characteristic changes in the EIT signals associated with pneumothoraces; 2) develop and fine-tune an algorithm for their automatic detection; and 3) prospectively evaluate this algorithm for its sensitivity and specificity in detecting pneumothoraces in real time. Design: Prospective controlled laboratory animal investigation. Setting: Experimental Pulmonology Laboratory of the University of Sao Paulo. Subjects: Thirty-nine anesthetized mechanically ventilated supine pigs (31.0 +/- 3.2 kg, mean +/- SD). Interventions. In a first group of 18 animals monitored by EIT, we either injected progressive amounts of air (from 20 to 500 mL) through chest tubes or applied large positive end-expiratory pressure (PEEP) increments to simulate extreme lung overdistension. This first data set was used to calibrate an EIT-based pneumothorax detection algorithm. Subsequently, we evaluated the real-time performance of the detection algorithm in 21 additional animals (with normal or preinjured lungs), submitted to multiple ventilatory interventions or traumatic punctures of the lung. Measurements and Main Results: Primary EIT relative images were acquired online (50 images/sec) and processed according to a few imaging-analysis routines running automatically and in parallel. Pneumothoraces as small as 20 mL could be detected with a sensitivity of 100% and specificity 95% and could be easily distinguished from parenchymal overdistension induced by PEEP or recruiting maneuvers, Their location was correctly identified in all cases, with a total delay of only three respiratory cycles. Conclusions. We created an EIT-based algorithm capable of detecting early signs of pneumothoraces in high-risk situations, which also identifies its location. It requires that the pneumothorax occurs or enlarges at least minimally during the monitoring period. Such detection was operator-free and in quasi real-time, opening opportunities for improving patient safety during mechanical ventilation.
Resumo:
Malva parviflora L. populations were collected from 24 locations across the Mediterranean-climatic agricultural region of Western Australia and grown in Perth in a common garden experiment. Seventeen morphometric and taxonomic measurements were taken and genetic variation was investigated by performing principal components analysis (PCA). Taxonomic measurements confirmed that all plants used in the study were M. parviflora. Greater variation occurred within populations than between populations. Separation between populations was only evident between northern and southern populations along principal components 2 (PC2), which was due mainly to flowering time. Flowering time and consequently photoperiod were highly correlated with latitude and regression analysis revealed a close relationship (r(2) = 0.6). Additionally, the pollination system of M. parviflora was examined. Plants were able to self-pollinate without the need for external vectors and the pollen ovule ratio (31 +/- 1.3) revealed that M. parviflora is most likely to be an obligate inbreeder with a slight potential for outcrossing. The limited variation of M. parviflora enhances the likelihood of suitable control strategies being effective across a broad area.
Resumo:
The metabolic syndrome (MetS) phenotype is typically characterized by visceral obesity, insulin resistance, atherogenic dyslipidemia involving hypertriglyceridemia and subnormal levels of high density lipoprotein-cholesterol (HDL-C), oxidative stress and elevated cardiovascular risk. The potent antioxidative activity of small HDL3 is defective in MetS [Hansel B, et al. J Clin Endocrinol Metab 2004;89:4963-71]. We evaluated the functional capacity of small HDL3 particles from MetS subjects to protect endothelial cells from apoptosis induced by mildly oxidized low-density lipoprotein (oxLDL). MetS subjects presented an insulin-resistant obese phenotype, with hypertriglyceridemia, elevated apolipoprotein B and insulin levels, but subnormal HDL-C concentrations and chronic low grade inflammation (threefold elevation of C-reactive protein). When human microvascular endothelial cells (HMEC-1) were incubated with oxLDL (200 jig apolipoprotein B/ml) in the presence or absence of control HDL subfiractions (25 mu g protein/ml), small, dense HDL3b and 3c significantly inhibited cellular annexin V binding and intracellular generation of reactive oxygen species. The potent anti-apoptotic activity of small HDL3c particles was reduced (-35%; p < 0.05) in MetS subjects (n = 16) relative to normolipidemic controls (n = 7). The attenuated anti-apoptotic activity of HDL3c correlated with abdominal obesity, atherogenic dyslipidemia and systemic oxidative stress (p < 0.05), and was intimately associated with altered physicochemical properties of apolipoprotein A-I (apoA-I-poor HDL3c, involving core cholesteryl ester depletion and triglyceride enrichment. We conclude that in MetS, apoA-I-poor, small, dense HDL3c exert defective protection of endothelial cells from oxLDL-induced apoptosis, potentially reflecting functional anomalies intimately associated with abnormal neutral lipid core content. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study aimed to investigate bone responses to a novel bioactive fully crystallized glass-ceramic of the quaternary system P(2)O(5)-Na(2)O-CaO-SiO(2) (Biosilicates (R)). Although a previous study demonstrated positive effects of Biosilicate (R) on in vitro bone-like matrix formation, its in vivo effect was not studied yet. Male Wistar rats (n = 40) with tibial defects were used. Four experimental groups were designed to compare this novel biomaterial with a gold standard bioactive material (Bioglass (R) 45S5), unfilled defects and intact controls. A three-point bending test was performed 20 days after the surgical procedure, as well as the histomorphometric analysis in two regions of interest: cortical bone and medullary canal where the particulate biomaterial was implanted. The biomechanical test revealed a significant increase in the maximum load at failure and stiffness in the Biosilicate group (R) (vs. control defects), whose values were similar to uninjured bones. There were no differences in the cortical bone parameters in groups with bone defects, but a great deal of woven bone was present surrounding Biosilicate (R) and Bioglass (R) 45S5 particulate. Although both bioactive materials supported significant higher bone formation; Biosilicate (R) was superior to Bioglass (R) 45S5 in some histomorphometric parameters (bone volume and number of osteoblasts). Regarding bone resorption, Biosilicate (R) group showed significant higher number of osteoclasts per unit of tissue area than defect and intact controls, despite of the non-significant difference in the osteoclastic surface as percentage of bone surface. This study reveals that the fully crystallized Biosilicate (R) has good bone-forming and bone-bonding properties. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 978: 139-147, 2011.
Resumo:
Introduction: Airway dysfunction in patients with the Acute Respiratory Distress Syndrome (ARDS) is evidenced by expiratory flow limitation and dynamic hyperinflation. These functional alterations have been attributed to closure/obstruction of small airways. Airway morphological changes have been reported in experimental models of acute lung injury, characterized by epithelial necrosis and denudation in distal airways. To date, however, no study has focused on the morphological airway changes in lungs from human subjects with ARDS. The aim of this study is to evaluate structural and inflammatory changes in distal airways in ARDS patients. Methods: We retrospectively studied autopsy lung tissue from subjects who died with ARDS and from control subjects who died of non pulmonary causes. Using image analysis, we quantified the extension of epithelial changes (normal, abnormal and denudated epithelium expressed as percentages of the total epithelium length), bronchiolar inflammation, airway wall thickness, and extracellular matrix (ECM) protein content in distal airways. The Student`s t test or the Mann-Whitney test was used to compare data between the ARDS and control groups. Bonferroni adjustments were used for multiple tests. The association between morphological and clinical data was analyzed by Pearson rank test. Results: Thirty-one ARDS patients (A: PaO(2)/FiO(2) <= 200, 45 +/- 14 years, 16 males) and 11 controls (C:52 +/- 16 years, 7 males) were included in the study. ARDS airways showed a shorter extension of normal epithelium (A:32.9 +/- 27.2%, C:76.7 +/- 32.7%, P < 0.001), a larger extension of epithelium denudation (A:52.6 +/- 35.2%, C:21.8 +/- 32.1%, P < 0.01), increased airway inflammation (A:1(3), C:0(1), P = 0.03), higher airway wall thickness (A:138.7 +/- 54.3 mu m, C:86.4 +/- 33.3 mu m, P < 0.01), and higher airway content of collagen I, fibronectin, versican and matrix metalloproteinase-9 (MMP-9) compared to controls (P = 0.03). The extension of normal epithelium showed a positive correlation with PaO(2)/FiO(2) (r(2) = 0.34; P = 0.02) and a negative correlation with plateau pressure (r(2) = 0.27; P = 0.04). The extension of denuded epithelium showed a negative correlation with PaO(2)/FiO(2) (r(2) = 0.27; P = 0.04). Conclusions: Structural changes in small airways of patients with ARDS were characterized by epithelial denudation, inflammation and airway wall thickening with ECM remodeling. These changes are likely to contribute to functional airway changes in patients with ARDS.
Resumo:
Introduction: The relevance of prostate size in the pathophysiology of lower urinary tract symptoms (LUTS) is controversial. We evaluated the urodynamic findings in patients with LUTS and small prostate volumes. Materials and Methods: 84 patients aged >= 50 years with LUTS and prostates < 40 ml were evaluated. All had an International Prostate Symptom Score (IPSS) >= 8. Average age was 62.0 +/- 8.1 years. We evaluated the impact of bladder outlet obstruction (BOO) and detrusor overactivity (DO) on the voiding symptoms and urodynamic findings. Results: Mean prostate volume was 29.2 +/- 7.2 ml and mean IPSS was 13.5 +/- 4.6. BOO was the main finding, affecting 42 (50.0%) patients, followed by detrusor underactivity (DU) in 41 (48.8%) and DO in 28 (33.3%) patients. Patients without BOO were significantly older than the obstructed (64.0 +/- 8.8 and 60.1 +/- 6.9 years, respectively; p = 0.026) and had an increased prevalence of DU (76.2 and 21.4%, respectively; p < 0.001). Comparison of patients with and without DO showed reduced bladder capacity and compliance in the DO group (p < 0.001). No other comparisons were significant. Conclusion: Half of the patients with LUTS and small prostates are not obstructed and may have DO or decreased detrusor contractility as the basis for their voiding symptoms. Our results emphasize the value of urodynamics in this population, especially when invasive treatments are being considered. Copyright (c) 2008 S. Karger AG, Basel.
Resumo:
The main aim of this study is to evaluate the capacity of human dental pulp stem cells (hDPSC), isolated from deciduous teeth, to reconstruct large-sized cranial bone defects in nonimmunosuppressed (NIS) rats. To our knowledge, these cells were not used before in similar experiments. We performed two symmetric full-thickness cranial defects (5 x 8 mm) on each parietal region of eight NIS rats. In six of them, the left side was supplied with collagen membrane only and the right side (RS) with collagen membrane and hDPSC. In two rats, the RS had collagen membrane only and nothing was added at the left side (controls). Cells were used after in vitro characterization as mesenchymal cells. Animals were euthanized at 7, 20, 30, 60, and 120 days postoperatively and cranial tissue samples were taken from the defects for histologic analysis. Analysis of the presence of human cells in the new bone was confirmed by molecular analysis. The hDPSC lineage was positive for the four mesenchymal cell markers tested and showed osteogenic, adipogenic, and myogenic in vitro differentiation. We observed bone formation 1 month after surgery in both sides, but a more mature bone was present in the RS. Human DNA was polymerase chain reaction-amplified only at the RS, indicating that this new bone had human cells. The us e of hDPSC in NIS rats did not cause any graft. rejection. Our findings suggest that hDPSC is an additional cell resource for correcting large cranial defects in rats and constitutes a promising model for reconstruction of human large cranial defects in craniofacial surgery.
Resumo:
IRI is closely related to sepsis in ITx setting. Complete understanding of the mechanisms involved in IRI development may improve outcomes. Ortothopic ITx without immunosuppression was performed in order to characterize IRI-associated mucosal damage. Twenty pigs underwent ITx. Two groups were assigned to different CI times: G1: 90 min and, G2: 180 min. Euro-Collins was used as preservation solution. Jejunal fragments were collected at donor laparotomy, 30 min, and 3 days after reperfusion. IRI assessment involved: histopathologic analysis, quantification of MPO-positive cells through immunohistochemical studies, quantification of epithelial apoptotic cells using TUNEL staining, and quantification of IL-6, ET-1, Bak, and Bcl-XL genes expression by RT-PCR. Neutrophilic infiltration increased in a similar fashion in both groups, but lasted longer in G2. Apoptosis detected by TUNEL staining increased and anti-apoptotic gene Bcl-XL expression decreased significantly in G1, 3 days after surgery. Endothelin-1 and IL-6 genes expression increased 30 min after the procedure and returned to baseline 3 days after surgery. In conclusion, IL-6 and ET-1 are involved precociously in the development of intestinal IRI. Apoptosis was more frequently detected in G1 grafts by TUNEL-staining and by RT-PCR.
Resumo:
Odorant-induced currents in mammalian olfactory receptor neurons have proved difficult to obtain reliably using conventional whole-cell recording. By using a mathematical model of the electrical circuit of the patch and rest-of-cell, we demonstrate how cell-attached patch measurements can be used to quantitatively analyze responses to odorants or a high (100 mM) K+ solution. High K+ induced an immediate current flux from cell to pipette, which was modeled as a depolarization of similar to 52 mV, close to that expected from the Nernst equation (56 mV), and no change in the patch conductance. By contrast, a cocktail of cAMP-stimulating odorants induced a current flux from pipette into cell following a significant (4-10 s) delay. This was modeled as an average patch conductance increase of 36 pS and a depolarization of 13 mV, Odorant-induced single channels had a conductance of 16 pS. In cells bathed with no Mg2+ and 0.25 mM Ca2+, odorants induced a current flow from cell to pipette, which was modeled as a patch conductance increase of similar to 115 pS and depolarization of similar to 32 mV, All these results are consistent with cAMP-gated cation channels dominating the odorant response, This approach, which provides useful estimates of odorant-induced voltage and conductance changes, is applicable to similar measurements in any small cells.
Resumo:
A novel flow-tagging technique is presented which was employed to measure gas velocities in the free stream of a shock tube. This method is based on the laser spectroscopic techniques of Laser-Enhanced Ionisation (LEI) and Laser-Induced Fluorescence (LIF). The flow in the shock tube is seeded with small amounts of sodium, and LEI is used to produce a substantial depletion of neutral sodium atom concentration in a well-defined region of the flow, by using two wavelength-resonance excitation and subsequent collisional ionisation. At a specific time delay, single-laser-pulse planar LIF is utilised to produce a two-dimensional (2-D) inverse image of the depleted tagged region downstream of the flow. By measuring the displacement of the tagged region, free stream velocities in a shock tube were determined. Large variations in the concentration of sodium seeded into the flow were observed and even in the presence of these large variations accurate free-stream velocity measurements were obtained. The experimentally determined value for velocity compares very well with the predicted velocity.
Resumo:
Background: Cardiac development is a complex and multifactorial biological process. Heterozygous mutations in the transcription factor NKX2.5 are between the first evidence of a genetic cause for congenital heart defects in human beings. In this study, we evaluated the presence and frequency of mutations in the NKX2.5 gene on 159 unrelated patients with a diverse range of non-syndromic congenital heart defects (conotruncal anomalies, septal defects, left-sided lesions, right-sided lesions, patent ductus arteriosus and Ebstein`s anomaly). Methods: The coding region of the NKX2.5 locus was amplified by polymerase chain reaction and mutational analysis was performed using denaturing high performance liquid chromatography (DHPLC) and DNA sequencing. Results: We identified two distinct mutations in the NKX2.5 coding region among the 159 (1.26%) individuals evaluated. An Arg25Cys mutation was identified in a patient with Tetralogy of Fallot. The second mutation found was an Ala42Pro in a patient with Ebstein`s anomaly. Conclusions: The association of NKX2.5 mutations is present in a small percentage of patients with non-syndromic congenital heart defects and may explain only a few cases of the disease. Screening strategies considering the identification of germ-line molecular defects in congenital heart disease are still unwarranted and should consider other genes besides NKX2.5. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
BACKGROUND: Recently, studies have been conducted examining the efficacy of 3% hypertonic saline solution (HS) for the treatment of traumatic brain injury; however, few studies have analyzed the effects of 3% hemorrhagic shock during hemorrhagic shock. The aim of this study was to test the potential immunomodulatory benefits of 3% hemorrhagic shock resuscitation over standard fluid resuscitation. METHODS: Wistar rats were bled to a mean arterial pressure of 35 mm Hg and then randomized into 3 groups: those treated with lactated Ringer`s solution (LR; 33 mL/kg, n = 7), 3% HS (10 mL/kg, n = 7), and 7.5% HS (4 mL/kg, n = 7). Half of the extracted blood was reinfused after fluid resuscitation. Animals that did not undergo shock served as controls (n = 5). Four hours after hemorrhagic shock, blood was collected for the evaluation of tumor necrosis factor-a and interleukin-6 by enzyme immunoassay. Lung and intestinal samples were obtained for histopathologic analysis. RESULTS: Animals in the HS groups had significantly higher mean arterial pressure than those in the LR group 1 hour after treatment. Osmolarity and sodium levels were markedly elevated in the HS groups. Tumor necrosis factor-alpha and interleukin-6 levels were similar between the control and HS groups but significantly higher in the LR group (P < .05). The lung injury score was significantly higher in the LR group compared with the 7.5% HS and 3% HS groups (5.7 +/- 0.7, 2.1 +/- 0.4, and 2.7 +/- 0.5, respectively). Intestinal injury was attenuated in the 7.5% HS and 3% HS groups compared with the LR group (2.0 +/- 0.6, 2.3 +/- 0.4, and 5.9 +/- 0.6, respectively). CONCLUSIONS: A small-volume resuscitation strategy modulates the inflammatory response and decreases end-organ damage after HS. Three percent HS provides immunomodulatory and metabolic effects similar to those observed with conventional concentrations of HS. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Background: Congenital heart diseases are the most frequent birth defects and are commonly associated with skeletal malformations. Mutations in the TBX5 gene, a T-box transcription factor located on chromosome 12q24.1, have been demonstrated to be the underlying molecular alteration in individuals with different congenital cardiac disorders, notably the Holt-Oram syndrome. Methods: Six members from a two-generation family from a consanguineous couple, which had atrial septal defects associated with postaxial hexodactyly in all extremities were clinically assessed and submitted to TBX5 mutational analysis performed by direct sequencing. Results: We detected a new TBX5 missense mutation (V263M) in all four individuals studied with cardiac abnormalities. The genotype phenotype correlations in light of unusual features are extensively discussed, as well as the possible significance of these atypical findings. Conclusions: These new data extend our clinical and molecular knowledge of TBX5 gene mutations and also raise interesting questions about the phenotype heterogeneity regarding these gene alterations. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Congenital heart disease (CHD) is the most common birth defect and the leading cause of mortality in the first year of life. In fetuses with a heart defect, chromosomal abnormalities are very frequent. Besides aneuploidy, 22q11.2 deletion is one of the most recognizable chromosomal abnormalities causing CHD. The frequency of this abnormality varies in nonselected populations. This study aimed to investigate the incidence of the 22q11.2 deletion and other chromosomal alterations in a Brazilian sample of fetuses with structural cardiac anomalies detected by fetal echocardiography. In a prospective study, 68 fetuses with a heart defect were evaluated. Prenatal detection of cardiac abnormalities led to identification of aneuploidy or structural chromosomal anomaly in 35.3% of these cases. None of the fetuses with apparently normal karyotypes had a 22q11.2 deletion. The heart defects most frequently associated with chromosomal abnormalities were atrioventricular septal defect (AVSD), ventricular septal defect (VSD), and tetralogy of Fallot. Autosomal trisomies 18 and 21 were the most common chromosomal abnormalities. The study results support the strong association of chromosome alterations and cardiac malformation, especially in AVSD and VSD, for which a chromosome investigation is indicated. In fetuses with an isolated conotruncal cardiopathy, fluorescence in situ hybridization (FISH) to investigate a 22q11.2 deletion is not indicated.