982 resultados para skeletal abnormalities syndrome
Resumo:
Several dysmorphic syndromes affect the development of both the eye and the ear, but only a few are restricted to the eye and the external ear. We describe a developmental defect affecting the eye and the external ear in three members of a consanguineous family. This syndrome is characterized by ophthalmic anomalies (microcornea, microphthalmia, anterior-segment dysgenesis, cataract, coloboma of various parts of the eye, abnormalities of the retinal pigment epithelium, and rod-cone dystrophy) and a particular cleft ear lobule. Linkage analysis and mutation screening revealed in the first exon of the NKX5-3 gene a homozygous 26 nucleotide deletion, generating a truncating protein that lacked the complete homeodomain. Morpholino knockdown expression of the zebrafish nkx5-3 induced microphthalmia and disorganization of the developing retina, thus confirming that this gene represents an additional member implicated in axial patterning of the retina.
Resumo:
Multicentric carpotarsal osteolysis (MCTO) is a rare skeletal dysplasia characterized by aggressive osteolysis, particularly affecting the carpal and tarsal bones, and is frequently associated with progressive renal failure. Using exome capture and next-generation sequencing in five unrelated simplex cases of MCTO, we identified previously unreported missense mutations clustering within a 51 base pair region of the single exon of MAFB, validated by Sanger sequencing. A further six unrelated simplex cases with MCTO were also heterozygous for previously unreported mutations within this same region, as were affected members of two families with autosomal-dominant MCTO. MAFB encodes a transcription factor that negatively regulates RANKL-induced osteoclastogenesis and is essential for normal renal development. Identification of this gene paves the way for development of novel therapeutic approaches for this crippling disease and provides insight into normal bone and kidney development.
Resumo:
We describe a female patient with a midline syndrome. The patient presents agenesis of the corpus callosum, encephalocele, iris coloboma, hypertelorism, submucosal cleft palate and dental anomalies. Despite being very characteristic, her phenotypical traits do not coincide exactly with those reported to date in the literature. The karyotype and the molecular cytogenetic study do not show mutations. We identify the presence of dental anomalies in the mother and other family members, not being identified MSX1 and PAX9 mutations that could the related with their etiology. Despite the fact that dental agenesis has been related to a large number of other malformation syndromes and congenital conditions, dental anomalies have only rarely been mentioned when reporting midline syndromes. These dental phenotypical traits, present in the patient and her family, could be considered part of the midline syndrome in carriers as well as in the patients.
Resumo:
Residual lung function abnormalities have been investigated in 9 children (4 boys and 5 girls) a mean 2.7 years after surviving severe adult respiratory distress syndrome (ARDS). All patients had been artificially ventilated for an average of 9.4 days with a FiO2 greater than 0.5 for 34 hours and maximal PEEP levels in the range of 8-20 cm H2O. Since the ARDS, 3 children had presented recurrent respiratory symptoms (moderate exertional dyspnea and cough) and 2 had had evidence of fibrosis on chest radiographs. In all patients abnormal lung functions were found, i.e. ventilation inequalities (8), hypoxemia (7), and obstructive (2) and restrictive (1) lung disease. A significant correlation between respirator therapy and residual lung function was found (duration of FiO2 greater than 0.5 in hours and inspiratory plateau pressure during respirator therapy vs. ventilation inequalities and hypoxemia).
Resumo:
Dynamic changes in body weight have long been recognized as important indicators of risk for debilitating diseases. While weight loss or impaired growth can lead to muscle wastage, as well as to susceptibility to infections and organ dysfunctions, the development of excess fat predisposes to type 2 diabetes and cardiovascular diseases, with insulin resistance as a central feature of the disease entities of the metabolic syndrome. Although widely used as the phenotypic expression of adiposity in population and gene-search studies, body mass index (BMI), that is, weight/height(2) (H(2)), which was developed as an operational definition for classifying both obesity and malnutrition, has considerable limitations in delineating fat mass (FM) from fat-free mass (FFM), in particular at the individual level. After an examination of these limitations within the constraints of the BMI-FM% relationship, this paper reviews recent advances in concepts about health risks related to body composition phenotypes, which center upon (i) the partitioning of BMI into an FM index (FM/H(2)) and an FFM index (FFM/H(2)), (ii) the partitioning of FFM into organ mass and skeletal muscle mass, (iii) the anatomical partitioning of FM into hazardous fat and protective fat and (iv) the interplay between adipose tissue expandability and ectopic fat deposition within or around organs/tissues that constitute the lean body mass. These concepts about body composition phenotypes and health risks are reviewed in the light of race/ethnic variability in metabolic susceptibility to obesity and the metabolic syndrome.
Resumo:
OBJECT: Reversible cerebral vasoconstriction syndrome (RCVS) is described as a clinical and radiological entity characterized by thunderclap headaches, a reversible segmental or multifocal vasoconstriction of cerebral arteries with or without focal neurological deficits or seizures. The purpose of this study is to determine risk factors of poor outcome in patients presented a RCVS. METHODS: A retrospective multi-center review of invasive and non-invasive neurovascular imaging between January 2006 and January 2011 has identified 10 patients with criterion of reversible segmental vasoconstriction syndrome. Demographics data, vascular risks and evolution of each of these patients were analyzed. RESULTS: Seven of the ten patients were females with a mean age of 46 years. In four patients, we did not found any causative factors. Two cases presented RCVS in post-partum period between their first and their third week after delivery. The other three cases were drug-induced RCVS, mainly vaso-active drugs. Cannabis was found as the causative factor in two patient, Sumatriptan identified in one patient while cyclosporine was the causative agent in also one patient. The mean duration of clinical follow-up was 10.2 months (range: 0-28 months). Two patients had neurological sequelae: one patient kept a dysphasia and the other had a homonymous lateral hemianopia. We could not find any significant difference of the evolution between secondary RCVS and idiopathic RCVS. The only two factors, which could be correlated to the clinical outcome were the neurological status at admission and the presence of intraparenchymal abnormalities (ischemic stroke, hematoma) in brain imaging. CONCLUSIONS: Fulminant vasoconstriction resulting in progressive symptoms or death has been reported in exceptional frequency. Physicians had to remember that such evolution could happen and predict them by identifying all factors of poor prognosis (neurological status at admission, the presence of intraparenchymal abnormalities).
Resumo:
Deletions on the short arm of chromosome 4 cause Wolf-Hirschhorn syndrome (WHS) and Pitt-Rogers-Danks syndrome (PRDS). WHS is associated with severe growth and mental retardation, microcephaly, a characteristic facies and congenital malformations. The PRDS phenotype is similar to WHS but generally less severe. Seizures occur in the majority of WHS and PRDS patients. Sgrò et al. [17] described a stereotypic electroclinical pattern in four unrelated WHS patients, consisting of intermittent bursts of 2-3 Hz high voltage slow waves with spike wave activity in the parietal areas during drowsiness and sleep associated with myoclonic jerks. We report a patient with PRDS and the typical EEG pattern and review 14 WHS patients with similar EEG findings reported in the literature. CONCLUSION: Awareness and recognition of the characteristic electroclinical findings in Wolf-Hirschhorn syndrome and Pitt-Rogers-Danks syndrome might help in the early diagnosis of such patients.
Resumo:
The Potocki-Lupski syndrome (PTLS) is associated with a microduplication of 17p11.2. Clinical features include multiple congenital and neurobehavioral abnormalities and autistic features. We have generated a PTLS mouse model, Dp(11)17/+, that recapitulates some of the physical and neurobehavioral phenotypes present in patients. Here, we investigated the social behavior and gene expression pattern of this mouse model in a pure C57BL/6-Tyr(c-Brd) genetic background. Dp(11)17/+ male mice displayed normal home-cage behavior but increased anxiety and increased dominant behavior in specific tests. A subtle impairment in the preference for a social target versus an inanimate target and abnormal preference for social novelty (the preference to explore an unfamiliar mouse versus a familiar one) was also observed. Our results indicate that these animals could provide a valuable model to identify the specific gene(s) that confer abnormal social behaviors and that map within this delimited genomic deletion interval. In a first attempt to identify candidate genes and for elucidating the mechanisms of regulation of these important phenotypes, we directly assessed the relative transcription of genes within and around this genomic interval. In this mouse model, we found that candidates genes include not only most of the duplicated genes, but also normal-copy genes that flank the engineered interval; both categories of genes showed altered expression levels in the hippocampus of Dp(11)17/+ mice.
Resumo:
Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.
Resumo:
Individuals with Down syndrome (DS) present important motor deficits that derive from altered motor development of infants and young children. DYRK1A, a candidate gene for DS abnormalities has been implicated in motor function due to its expression in motor nuclei in the adult brain, and its overexpression in DS mouse models leads to hyperactivity and altered motor learning. However, its precise role in the adult motor system, or its possible involvement in postnatal locomotor development has not yet been clarified. During the postnatal period we observed time-specific expression of Dyrk1A in discrete subsets of brainstem nuclei and spinal cord motor neurons. Interestingly, we describe for the first time the presence of Dyrk1A in the presynaptic terminal of the neuromuscular junctions and its axonal transport from the facial nucleus, suggesting a function for Dyrk1A in these structures. Relevant to DS, Dyrk1A overexpression in transgenic mice (TgDyrk1A) produces motor developmental alterations possibly contributing to DS motor phenotypes and modifies the numbers of motor cholinergic neurons, suggesting that the kinase may have a role in the development of the brainstem and spinal cord motor system.
Resumo:
Fragile X-syndrome is caused by a mutation in chromosome X. It is one of the most frequent causes of learning disability. The most frequent manifestations of fragile X-syndrome are learning disability, different orofacial morphological alterations and an increase in testicle size. The disease is associated with cardiac malformations, joint hyperextension and behavioural alterations. We present two male patients aged 17 and 10 years, treated in our Service due to severe gingivitis. Both showed the typical facial and dental characteristics of the syndrome. In addition, we detected the presence of root anomalies such as taurodontism and root bifurcation, which had not been associated with fragile X-syndrome in the literature. In some cases these root malformations have been associated with other sex-linked congenital syndromes, though in none of the studies published in the literature have they been related with fragile X-syndrome. This syndrome is relevant due to its high prevalence, the presentation of certain oral and facial characteristics that can facilitate the diagnosis, and the few cases published to date
Resumo:
PURPOSE: To define the phenotypic manifestation, confirm the genetic basis, and delineate the pathogenic mechanisms underlying an oculoauricular syndrome (OAS). METHODS: Two individuals from a consanguineous family underwent comprehensive clinical phenotyping and electrodiagnostic testing (EDT). Genome-wide microarray analysis and Sanger sequencing of the candidate gene were used to identify the likely causal variant. Protein modelling, Western blotting, and dual luciferase assays were used to assess the pathogenic effect of the variant in vitro. RESULTS: Complex developmental ocular abnormalities of congenital cataract, anterior segment dysgenesis, iris coloboma, early-onset retinal dystrophy, and abnormal external ear cartilage presented in the affected family members. Genetic analyses identified a homozygous c.650A>C; p.(Gln217Pro) missense mutation within the highly conserved homeodomain of the H6 family homeobox 1 (HMX1) gene. Protein modelling predicts that the variant may have a detrimental effect on protein folding and/or stability. In vitro analyses were able to demonstrate that the mutation has no effect on protein expression but adversely alters function. CONCLUSIONS: Oculoauricular syndrome is an autosomal recessive condition that has a profound effect on the development of the external ear, anterior segment, and retina, leading to significant visual loss at an early age. This study has delineated the phenotype and confirmed HMX1 as the gene causative of OAS, enabling the description of only the second family with the condition. HMX1 is a key player in ocular development, possibly in both the pathway responsible for lens and retina development, and via the gene network integral to optic fissure closure.
Resumo:
Introduction: Moebius syndrome is a rare congenital disorder characterized by unilateral or bilateral involvement of the sixth and seventh cranial nerves, resulting in a lack of facial expression and eye movements. These patients suffer a series of oral manifestations that may complicate their dental treatment, such as facial and tongue muscle weakness, uncontrolled salivation secondary to defi cient lip sealing, micrognathia, microstomia, bifi d uvula, gothic and fi ssured palate, fi ssured tongue, and glossoptosis. The underlying etiology remains unclear, though vascular problems during embryogenesis appear to be involved. Clinical case: We report the case of a woman with Moebius syndrome and total edentulism. Eight years ago she underwent complete oral rehabilitation with the placement of two implants in each dental arch. Discussion: Moebius syndrome has still an unknown etiology, although it is related to disorders during pregnancy. This kind of patient can be rehabilitated using oral implants.
Resumo:
Previous studies have shown that over 40% of babies with Down syndrome have a major cardiac anomaly and are more likely to have other major congenital anomalies. Since 2000, many countries in Europe have introduced national antenatal screening programs for Down syndrome. This study aimed to determine if the introduction of these screening programs and the subsequent termination of prenatally detected pregnancies were associated with any decline in the prevalence of additional anomalies in babies born with Down syndrome. The study sample consisted of 7,044 live births and fetal deaths with Down syndrome registered in 28 European population-based congenital anomaly registries covering seven million births during 2000-2010. Overall, 43.6% (95% CI: 42.4-44.7%) of births with Down syndrome had a cardiac anomaly and 15.0% (14.2-15.8%) had a non-cardiac anomaly. Female babies with Down syndrome were significantly more likely to have a cardiac anomaly compared to male babies (47.6% compared with 40.4%, P < 0.001) and significantly less likely to have a non-cardiac anomaly (12.9% compared with 16.7%, P < 0.001). The prevalence of cardiac and non-cardiac congenital anomalies in babies with Down syndrome has remained constant, suggesting that population screening for Down syndrome and subsequent terminations has not influenced the prevalence of specific congenital anomalies in these babies.
Resumo:
NlmCategory="UNASSIGNED">Metabolic syndrome after transplantation is a major concern following solid organ transplantation (SOT). The CREB-regulated transcription co-activator 2 (CRTC2) regulates glucose metabolism. The effect of CRTC2 polymorphisms on new-onset diabetes after transplantation (NODAT) was investigated in a discovery sample of SOT recipients (n1=197). Positive results were tested for replication in two samples from the Swiss Transplant Cohort Study (STCS, n2=1294 and n3=759). Obesity and other metabolic traits were also tested. Associations with metabolic traits in population-based samples (n4=46'186, n5=123'865, n6>100,000) were finally analyzed. In the discovery sample, CRTC2 rs8450-AA genotype was associated with NODAT, fasting blood glucose and body mass index (Pcorrected<0.05). CRTC2 rs8450-AA genotype was associated with NODAT in the second STCS replication sample (odd ratio (OR)=2.01, P=0.04). In the combined STCS replication samples, the effect of rs8450-AA genotype on NODAT was observed in patients having received SOT from a deceased donor and treated with tacrolimus (n=395, OR=2.08, P=0.02) and in non-kidney transplant recipients (OR=2.09, P=0.02). Moreover, rs8450-AA genotype was associated with overweight or obesity (n=1215, OR=1.56, P=0.02), new-onset hyperlipidemia (n=1007, OR=1.76, P=0.007), and lower high-density lipoprotein-cholesterol (n=1214, β=-0.08, P=0.001). In the population-based samples, a proxy of rs8450G>A was significantly associated with several metabolic abnormalities. CRTC2 rs8450G>A appears to have an important role in the high prevalence of metabolic traits observed in patients with SOT. A weak association with metabolic traits was also observed in the population-based samples.The Pharmacogenomics Journal advance online publication, 8 December 2015; doi:10.1038/tpj.2015.82.