943 resultados para single operation cycle


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to inadequacies of previous underwater towing techniques and the special needs of a recent underwater survey, a modified mania-board technique was developed. With this new technique, the diver holds on to the manta-board with one arm; consequently, the board is referred to as a single-armed manta-board (sam-board). The sam-board proved inexpensive and highly maneuverable, allowing the divers to freely collect samples or record information. Through some experimenting with the board and changing some of the variables, such as rope lengths, towing speeds, etc., a highly efficient towing method can be achieved. Preplanning and strict diving safety procedures must, however, be implemented to assure efficiency. This paper presents the materials, guidelines for board construction, equipment, and preplanning and diving safety procedures necessary for the sam-board towing operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An all-optical parity checker is proposed that requires only a single Mach-Zehnder interferometer. Simulation results demonstrate an 8dB improvement in extinction ratio at 10 Gb/s operation. © 1999 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perhaps the most difficult job of the ecotoxicologist is extrapolating data calculated from laboratory experiments with high precision and accuracy into the real world of highly-dynamics aquatic environments. The establishment of baseline laboratory toxicity testing data for individual compounds and ecologically important and field studies serve as a precursor to ecosystem level studies needed for ecological risk assessment. The first stage in the field portion of risk assessment is the determination of actual environmental concentrations of the contaminant being studied and matching those concentrations with laboratory toxicity tests. Risk estimates can be produced via risk quotients that would determine the probability that adverse effects may occur. In this first stage of risk assessment, environmental realism is often not achieved. This is due, in part, to the fact that single-species laboratory toxicity tests, while highly controlled, do not account for the complex interactions (Chemical, physical, and biological) that take place in the natural environment. By controlling as many variables in the laboratory as possible, an experiment can be produced in such a fashion that real effects from a compound can be determined for a particular test organism. This type of approach obviously makes comparison with real world data most difficult. Conversely, field oriented studies fall short in the interpretation of ecological risk assessment because of low statistical power, lack of adequate replicaiton, and the enormous amount of time and money needed to perform such studies. Unlike a controlled laboratory bioassay, many other stressors other than the chemical compound in question affect organisms in the environment. These stressors range from natural occurrences (such as changes in temperature, salinity, and community interactions) to other confounding anthropogenic inputs. Therefore, an improved aquatic toxicity test that will enhance environmental realism and increase the accuracy of future ecotoxicological risk assessments is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coherent coupling between a large number of qubits is the goal for scalable approaches to solid state quantum information processing. Prototype systems can be characterized by spectroscopic techniques. Here, we use pulsed-continuous wave microwave spectroscopy to study the behavior of electrons trapped at defects within the gate dielectric of a sol-gel-based high-k silicon MOSFET. Disorder leads to a wide distribution in trap properties, allowing more than 1000 traps to be individually addressed in a single transistor within the accessible frequency domain. Their dynamical behavior is explored by pulsing the microwave excitation over a range of times comparable to the phase coherence time and the lifetime of the electron in the trap. Trap occupancy is limited to a single electron, which can be manipulated by resonant microwave excitation and the resulting change in trap occupancy is detected by the change in the channel current of the transistor. The trap behavior is described by a classical damped driven simple harmonic oscillator model, with the phase coherence, lifetime and coupling strength parameters derived from a continuous wave (CW) measurement only. For pulse times shorter than the phase coherence time, the energy exchange between traps, due to the coupling, strongly modulates the observed drain current change. This effect could be exploited for 2-qubit gate operation. The very large number of resonances observed in this system would allow a complex multi-qubit quantum mechanical circuit to be realized by this mechanism using only a single transistor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monthly average temperatures at Puttalam Lagoon, Dutch Bay, Portugal Bay towards Kovilmunai and Portugal Bay towards Pallugaturai showed a distinct annual cycle. The peak was in April and values gradually fell till September. There was a further gradual fall in temperature from October to January. The highest temperatures in all four stations were in April. The highest salinities in all the stations were from May to October i.e., during the south-west monsoon. The salinities at Dutch Bay and Portugal Bay were high in March and April corresponding to the highest temperatures reached during these months. Two maxima have been observed in phytoplankton production. A primary maximum in May-June and a secondary maximum in October. The primary and secondary maxima are due to the influx of nutrient laden waters from the rivers Kal Aru and Pomparippu Aru. The phytoplankton producing blooms were Rhizosolenia alata. Rhizosolenia imbricata, Chaetoceros lascinosus, Chaetoceros pervianus, Ch,aetoceros diversus, Coscinodiscus gigas, Thallasionema nitzschioides, Thalassiosira subtilis, Thallassiothrix frauenfeldii, Asterionella japonica, Sceletonema costatum, Bacteriastrum varians and Biddulphia sinensis. Sudden outbursts of a single species were common. These diatoms were species of Chaetoceros and Rhizosolenia, and Thallassiothrix frauenfeldii. Wide fluctuations have been observed in the distribution of phytoplankton but no definite conclusions can be drawn as the period of observation was only one year.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method has been used to design a power semiconductor device which combines IGBT switching and thyristor on-state characteristics. A single gate signal controls the switching and triggers the transitions between the IGBT and thyristor modes of operation. This paper discusses single-gated devices with multiple modes and aspects of their switching behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common-rail fuel injection systems on modern light duty diesel engines are effectively able to respond instantaneously to changes in the demanded injection quantity. In contrast, the air-system is subject to significantly slower dynamics, primarily due to filling/emptying effects in the manifolds and turbocharger inertia. The behaviour of the air-path in a diesel engine is therefore the main limiting factor in terms of engine-out emissions during transient operation. This paper presents a simple mean-value model for the air-path during throttled operation, which is used to design a feed-forward controller that delivers very rapid changes in the in-cylinder charge properties. The feed-forward control action is validated using a state-of-the-art sampling system that allows true cycle-by-cycle measurement of the in-cylinder CO2 concentration. © 2011 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of long-lived transuranic (TRU) waste is a major disadvantage of fission-based nuclear power. Incineration, and virtual elimination, of waste stockpiles is possible in a thorium (Th) fuelled critical or subcritical fast reactor. Fuel cycles producing a net decrease in TRUs are possible in conventional pressurised water reactors (PWRs). However, minor actinides (MAs) have a detrimental effect on reactivity and stability, ultimately limiting the quality and quantity of waste that can be incinerated. In this paper, we propose using a thorium-retained-actinides fuel cycle in PWRs, where the reactor is fuelled with a mixture of thorium and TRU waste, and after discharge all actinides are reprocessed and returned to the reactor. To investigate the feasibility and performance of this fuel cycle an assembly-level analysis for a one-batch reloading strategy was completed over 125 years of operation using WIMS 9. This one-batch analysis was performed for simplicity, but allowed an indicative assessment of the performance of a four-batch fuel management strategy. The build-up of 233U in the reactor allowed continued reactive and stable operation, until all significant actinide populations had reached pseudo-equilibrium in the reactor. It was therefore possible to achieve near-complete transuranic waste incineration, even for fuels with significant MA content. The average incineration rate was initially around 330 kg per GW th year and tended towards 250 kg per GW th year over several decades: a performance comparable to that achieved in a fast reactor. Using multiple batch fuel management, competitive or improved end-of-cycle burn-up appears achievable. The void coefficient (VC), moderator temperature coefficient (MTC) and Doppler coefficient remained negative. The quantity of soluble boron required for a fixed fuel cycle length was comparable to that for enriched uranium fuel, and acceptable amounts can be added without causing a positive VC or MTC. This analysis is limited by the consideration of a single fuel assembly, and it will be necessary to perform a full core coupled neutronic-thermal-hydraulic analysis to determine if the design in its current form is feasible. In particular, the potential for positive VCs if the core is highly or locally voided is a cause for concern. However, these results provide a compelling case for further work on concept feasibility and fuel management, which is in progress. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a single-phase variant of the Brushless Doubly-Fed Machine, the Single-Phase BDFM, SPB. Like the BDFM it is a variable speed generator which requires a converter rated at only a fraction of the machine rating, using structure with no brushes. Unlike the BDFM, most of its power is delivered directly into a single-phase grid connection. As such it is a potential replacement for PM generators in small-ish wind turbines, potentially with a much lower cost. In this paper we give details of its operation, with reference to results from the first prototype SPB. We also suggest how it may be controlled, again with experimental results. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large digital chips use a significant amount of energy to broadcast a low-skew, multigigahertz clock to millions of latches located throughout the chip. Every clock cycle, the large aggregate capacitance of the clock network is charged from the supply and then discharged to ground. Instead of wasting this stored energy, it is possible to recycle the energy by controlling its delivery to another part of the chip using an on-chip dc-dc converter. The clock driver and switching converter circuits share many compatible characteristics that allow them to be merged into a single design and fully integrated on-chip. Our buck converter prototype, manufactured in 90-nm CMOS, provides a proof-of-concept that clock network energy can be recycled to other parts of the chip, thus lowering overall energy consumption. It also confirms that monolithic multigigahertz switching converters utilizing zero-voltage switching can be implemented in deep-submicrometer CMOS. With multigigahertz operation, fully integrated inductors and capacitors use a small amount of chip area with low losses. Combining the clock driver with the power converter can share the large MOSFET drivers necessary as well as being energy and space efficient. We present an analysis of the losses which we confirm by experimentally comparing the merged circuit with a conventional clock driver. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone "sandwiched" between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone "sandwiched" between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of 233U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing interest in innovative reactors and advanced fuel cycle designs requires more accurate prediction of various transuranic actinide concentrations during irradiation or following discharge because of their effect on reactivity or spent-fuel emissions, such as gamma and neutron activity and decay heat. In this respect, many of the important actinides originate from the 241Am(n,γ) reaction, which leads to either the ground or the metastable state of 242Am. The branching ratio for this reaction depends on the incident neutron energy and has very large uncertainty in the current evaluated nuclear data files. This study examines the effect of accounting for the energy dependence of the 241Am(n,γ) reaction branching ratio calculated from different evaluated data files for different reactor and fuel types on the reactivity and concentrations of some important actinides. The results of the study confirm that the uncertainty in knowing the 241Am(n,γ) reaction branching ratio has a negligible effect on the characteristics of conventional light water reactor fuel. However, in advanced reactors with large loadings of actinides in general, and 241Am in particular, the branching ratio data calculated from the different data files may lead to significant differences in the prediction of the fuel criticality and isotopic composition. Moreover, it was found that neutron energy spectrum weighting of the branching ratio in each analyzed case is particularly important and may result in up to a factor of 2 difference in the branching ratio value. Currently, most of the neutronic codes have a single branching ratio value in their data libraries, which is sometimes difficult or impossible to update in accordance with the neutron spectrum shape for the analyzed system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and incore and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme.