924 resultados para simulation,virtual reality,opengl,library injection
Resumo:
Visualization is a relatively recent tool available to engineers for enhancing transportation project design through improved communication, decision making, and stakeholder feedback. Current visualization techniques include image composites, video composites, 2D drawings, drive-through or fly-through animations, 3D rendering models, virtual reality, and 4D CAD. These methods are used mainly to communicate within the design and construction team and between the team and external stakeholders. Use of visualization improves understanding of design intent and project concepts and facilitates effective decision making. However, visualization tools are typically used for presentation only in large-scale urban projects. Visualization is not widely accepted due to a lack of demonstrated engineering benefits for typical agency projects, such as small- and medium-sized projects, rural projects, and projects where external stakeholder communication is not a major issue. Furthermore, there is a perceived high cost of investment of both financial and human capital in adopting visualization tools. The most advanced visualization technique of virtual reality has only been used in academic research settings, and 4D CAD has been used on a very limited basis for highly complicated specialty projects. However, there are a number of less intensive visualization methods available which may provide some benefit to many agency projects. In this paper, we present the results of a feasibility study examining the use of visualization and simulation applications for improving highway planning, design, construction, and safety and mobility.
Resumo:
This work investigates novel alternative means of interaction in a virtual environment (VE).We analyze whether humans can remap established body functions to learn to interact with digital information in an environment that is cross-sensory by nature and uses vocal utterances in order to influence (abstract) virtual objects. We thus establish a correlation among learning, control of the interface, and the perceived sense of presence in the VE. The application enables intuitive interaction by mapping actions (the prosodic aspects of the human voice) to a certain response (i.e., visualization). A series of single-user and multiuser studies shows that users can gain control of the intuitive interface and learn to adapt to new and previously unseen tasks in VEs. Despite the abstract nature of the presented environment, presence scores were generally very high.
Resumo:
In body ownership illusions participants feel that a mannequin or virtual body (VB) is their own. Earlier results suggest that body ownership over a body seen from behind in extra personal space is possible when the surrogate body is visually stroked and tapped on its back, while spatially and temporal synchronous tactile stimulation is applied to the participant's back. This result has been disputed with the claim that the results can be explained by self-recognition rather than somatic body ownership. We carried out an experiment with 30 participants in a between-groups design. They all saw the back of a VB 1.2 m in front, that moved in real-time determined by upper body motion capture. All felt tactile stimulation on their back, and for 15 of them this was spatially and temporally synchronous with stimulation that they saw on the back of the VB, but asynchronous for the other 15. After 3 min a revolving fan above the VB descended and stopped at the position of the VB neck. A questionnaire assessed referral of touch to the VB, body ownership, the illusion of drifting forwards toward the VB, and the VB drifting backwards. Heart rate deceleration (HRD) and the amount of head movement during the threat period were used to assess the response to the threat from the fan. Results showed that although referral of touch was significantly greater in the synchronous condition than the asynchronous, there were no other differences between the conditions. However, a further multivariate analysis revealed that in the visuotactile synchronous condition HRD and head movement increased with the illusion of forward drift and decreased with backwards drift. Body ownership contributed positively to these drift sensations. Our conclusion is that the setup results in a contradiction-somatic feelings associated with a distant body-that the brain attempts to resolve by generating drift illusions that would make the two bodies coincide.
Resumo:
When a rubber hand is placed on a table top in a plausible position as if part of a person"s body, and is stroked synchronously with the person"s corresponding hidden real hand, an illusion of ownership over the rubber hand can occur (Botvinick and Cohen 1998). A similar result has been found with respect to a virtual hand portrayed in a virtual environment, a virtual hand illusion (Slater et al. 2008). The conditions under which these illusions occur have been the subject of considerable study. Here we exploited the flexibility of virtual reality to examine four contributory factors: visuo-tactile synchrony while stroking the virtual and the real arms, body continuity, alignment between the real and virtual arms, and the distance between them. We carried out three experiments on a total of 32 participants where these factors were varied. The results show that the subjective illusion of ownership over the virtual arm and the time to evoke this illusion are highly dependent on synchronous visuo-tactile stimulation and on connectivity of the virtual arm with the rest of the virtual body. The alignment between the real and virtual arms and the distance between these were less important. It was found that proprioceptive drift was not a sensitive measure of the illusion, but was only related to the distance between the real and virtual arms.
Resumo:
This work investigates novel alternative means of interaction in a virtual environment (VE).We analyze whether humans can remap established body functions to learn to interact with digital information in an environment that is cross-sensory by nature and uses vocal utterances in order to influence (abstract) virtual objects. We thus establish a correlation among learning, control of the interface, and the perceived sense of presence in the VE. The application enables intuitive interaction by mapping actions (the prosodic aspects of the human voice) to a certain response (i.e., visualization). A series of single-user and multiuser studies shows that users can gain control of the intuitive interface and learn to adapt to new and previously unseen tasks in VEs. Despite the abstract nature of the presented environment, presence scores were generally very high.
Resumo:
In body ownership illusions participants feel that a mannequin or virtual body (VB) is their own. Earlier results suggest that body ownership over a body seen from behind in extra personal space is possible when the surrogate body is visually stroked and tapped on its back, while spatially and temporal synchronous tactile stimulation is applied to the participant's back. This result has been disputed with the claim that the results can be explained by self-recognition rather than somatic body ownership. We carried out an experiment with 30 participants in a between-groups design. They all saw the back of a VB 1.2 m in front, that moved in real-time determined by upper body motion capture. All felt tactile stimulation on their back, and for 15 of them this was spatially and temporally synchronous with stimulation that they saw on the back of the VB, but asynchronous for the other 15. After 3 min a revolving fan above the VB descended and stopped at the position of the VB neck. A questionnaire assessed referral of touch to the VB, body ownership, the illusion of drifting forwards toward the VB, and the VB drifting backwards. Heart rate deceleration (HRD) and the amount of head movement during the threat period were used to assess the response to the threat from the fan. Results showed that although referral of touch was significantly greater in the synchronous condition than the asynchronous, there were no other differences between the conditions. However, a further multivariate analysis revealed that in the visuotactile synchronous condition HRD and head movement increased with the illusion of forward drift and decreased with backwards drift. Body ownership contributed positively to these drift sensations. Our conclusion is that the setup results in a contradiction-somatic feelings associated with a distant body-that the brain attempts to resolve by generating drift illusions that would make the two bodies coincide.
Resumo:
This paper describes a simple low-cost approach toadding an element of haptic interaction within a virtualenvironment. Using off-the-shelf hardware and software wedescribe a simple setup that can be used to explore physically virtual objects in space. This setup comprises of a prototype glove with a number of vibrating actuators to provide the haptic feedback, a Kinect camera for the tracking of the user's hand and a virtual reality development environment. As proof of concept and to test the efficiency of the system as well as its potential applications, we developed a simple application where we created 4 different shapes within a virtual environment in order to try toexplore them and guess their shape through touch alone.
Resumo:
Previous studies have examined the experience of owning a virtual surrogate body or body part through specific combinations of cross-modal multisensory stimulation. Both visuomotor (VM) and visuotactile (VT) synchronous stimulation have been shown to be important for inducing a body ownership illusion, each tested separately or both in combination. In this study we compared the relative importance of these two cross-modal correlations, when both are provided in the same immersive virtual reality setup and the same experiment. We systematically manipulated VT and VM contingencies in order to assess their relative role and mutual interaction. Moreover, we present a new method for measuring the induced body ownership illusion through time, by recording reports of breaks in the illusion of ownership ("breaks") throughout the experimental phase. The balance of the evidence, from both questionnaires and analysis of the breaks, suggests that while VM synchronous stimulation contributes the greatest to the attainment of the illusion, a disruption of either (through asynchronous stimulation) contributes equally to the probability of a break in the illusion.
Resumo:
A sign of presence in virtual environments is that people respond to situations and events as if they were real, where response may be considered at many different levels, ranging from unconscious physiological responses through to overt behavior,emotions, and thoughts. In this paper we consider two responses that gave different indications of the onset of presence in a gradually forming environment. Two aspects of the response of people to an immersive virtual environment were recorded: their eye scanpath, and their skin conductance response (SCR). The scenario was formed over a period of 2 min, by introducing an increasing number of its polygons in random order in a head-tracked head-mounted display. For one group of experimental participants (n 8) the environment formed into one in which they found themselves standing on top of a 3 m high column. For a second group of participants (n 6) the environment was otherwise the same except that the column was only 1 cm high, so that they would be standing at normal ground level. For a third group of participants (n 14) the polygons never formed into a meaningful environment. The participants who stood on top of the tall column exhibited a significant decrease in entropy of the eye scanpath and an increase in the number of SCR by 99 s into the scenario, at a time when only 65% of the polygons had been displayed. The ground level participants exhibited a similar decrease in scanpath entropy, but not the increase in SCR. The random scenario grouping did not exhibit this decrease in eye scanpath entropy. A drop in scanpath entropy indicates that the environment had cohered into a meaningful perception. An increase in the rate of SCR indicates the perception of an aversive stimulus. These results suggest that on these two dimensions (scanpath entropy and rate of SCR) participants were responding realistically to the scenario shown in the virtual environment. In addition, the response occurred well before the entire scenario had been displayed, suggesting that once a set of minimal cues exists within a scenario,it is enough to form a meaningful perception. Moreover, at the level of the sympathetic nervous system, the participants who were standing on top of the column exhibited arousal as if their experience might be real. This is an important practical aspect of the concept of presence.
Resumo:
This paper presents the quantitative and qualitative findings from an experiment designed to evaluate a developing model of affective postures for full-body virtual characters in immersive virtual environments (IVEs). Forty-nine participants were each requested to explore a virtual environment by asking two virtual characters for instructions. The participants used a CAVE-like system to explore the environment. Participant responses and their impression of the virtual characters were evaluated through a wide variety of both quantitative and qualitative methods. Combining a controlled experimental approach with various data-collection methods provided a number of advantages such as providing a reason to the quantitative results. The quantitative results indicate that posture plays an important role in the communication of affect by virtual characters. The qualitative findings indicated that participants attribute a variety of psychological states to the behavioral cues displayed by virtual characters. In addition, participants tended to interpret the social context portrayed by the virtual characters in a holistic manner. This suggests that one aspect of the virtual scene colors the perception of the whole social context portrayed by the virtual characters. We conclude by discussing the importance of designing holistically congruent virtual characters especially in immersive settings.
Resumo:
Brain-computer interfaces (BCIs) are becoming more and more popular as an input device for virtual worlds and computer games. Depending on their function, a major drawback is the mental workload associated with their use and there is significant effort and training required to effectively control them. In this paper, we present two studies assessing how mental workload of a P300-based BCI affects participants" reported sense of presence in a virtual environment (VE). In the first study, we employ a BCI exploiting the P300 event-related potential (ERP) that allows control of over 200 items in a virtual apartment. In the second study, the BCI is replaced by a gaze-based selection method coupled with wand navigation. In both studies, overall performance is measured and individual presence scores are assessed by means of a short questionnaire. The results suggest that there is no immediate benefit for visualizing events in the VE triggered by the BCI and that no learning about the layout of the virtual space takes place. In order to alleviate this, we propose that future P300-based BCIs in VR are set up so as require users to make some inference about the virtual space so that they become aware of it,which is likely to lead to higher reported presence.
Resumo:
Under what conditions will a bystander intervene to try to stop a violent attack by one person on another? It is generally believed that the greater the size of the crowd of bystanders, the less the chance that any of them will intervene. A complementary model is that social identity is critical as an explanatory variable. For example, when the bystander shares common social identity with the victim the probability of intervention is enhanced, other things being equal. However, it is generally not possible to study such hypotheses experimentally for practical and ethical reasons. Here we show that an experiment that depicts a violent incident at life-size in immersive virtual reality lends support to the social identity explanation. 40 male supporters of Arsenal Football Club in England were recruited for a two-factor between-groups experiment: the victim was either an Arsenal supporter or not (in-group/out-group), and looked towards the participant for help or not during the confrontation. The response variables were the numbers of verbal and physical interventions by the participant during the violent argument. The number of physical interventions had a significantly greater mean in the ingroup condition compared to the out-group. The more that participants perceived that the Victim was looking to them for help the greater the number of interventions in the in-group but not in the out-group. These results are supported by standard statistical analysis of variance, with more detailed findings obtained by a symbolic regression procedure based on genetic programming. Verbal interventions made during their experience, and analysis of post-experiment interview data suggest that in-group members were more prone to confrontational intervention compared to the out-group who were more prone to make statements to try to diffuse the situation.
Resumo:
Male volunteers entered an immersive virtual reality that depicted a party, where they were approached by a lone virtual woman who initiated a conversation. The goal was to study how socially anxious and socially confident men would react to this event. Interest focused on whether the socially anxious participants would exhibit sustained anxiety during the conversation or whether this would diminish over time, and differ from the responses of the more socially confident men.
Resumo:
Previous studies have examined the experience of owning a virtual surrogate body or body part through specific combinations of cross-modal multisensory stimulation. Both visuomotor (VM) and visuotactile (VT) synchronous stimulation have been shown to be important for inducing a body ownership illusion, each tested separately or both in combination. In this study we compared the relative importance of these two cross-modal correlations, when both are provided in the same immersive virtual reality setup and the same experiment. We systematically manipulated VT and VM contingencies in order to assess their relative role and mutual interaction. Moreover, we present a new method for measuring the induced body ownership illusion through time, by recording reports of breaks in the illusion of ownership ("breaks") throughout the experimental phase. The balance of the evidence, from both questionnaires and analysis of the breaks, suggests that while VM synchronous stimulation contributes the greatest to the attainment of the illusion, a disruption of either (through asynchronous stimulation) contributes equally to the probability of a break in the illusion.
Resumo:
Commercially available haptic interfaces are usable for many purposes. However, as generic devices they are not the most suitable for the control of heavy duty mobile working machines like mining machines, container handling equipment and excavators. Alternative mechanical constructions for a haptic controller are presented and analysed. A virtual reality environment (VRE) was built to test the proposed haptic controller mechanisms. Verification of an electric motor emulating a hydraulic pump in the electro-hydraulic system of a mobile working machine is carried out. A real-time simulator using multi-body-dynamics based software with hardware-in-loop (HIL) setup was used for the tests. Recommendations for further development of a haptic controller and emulator electric motor are given.