904 resultados para silver-based alloy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypoeutectic boron addition (0.1 wt.%) to Ti-6Al-4V is known to cause significant refinement of the cast microstructure. In the present investigation, it has been observed that trace boron addition to Ti-6Al-4V alloy also ensures excellent microstructural homogeneity throughout the ingot. A subdued thermal gradient, related to the basic grain refinement mechanism by constitutional undercooling, persists during solidification for the boron-containing alloy and maintains equivalent beta grain growth kinetics at different locations in the ingot. The Ti-6Al-4V alloy shows relatively strong texture with preferred components (e.g. ingot axis parallel to[0 0 0 1] or [1 0 (1) over bar 0]) over the entire ingot and gradual transition of texture components along the radius. For Ti-6Al-4V-0.1B alloy, significant weakening characterizes both the high-temperature beta and room-temperature a texture. In addition to solidification factors that are responsible for weak beta texture development, microstructural differences due to boron addition, e.g. the absence of grain boundary alpha phase and presence of TiB particles, strongly affects the mechanism of beta -> alpha phase transformation and consequently weakens the alpha phase texture. Based on the understanding developed for the boron-modified alloy, a novel mechanism has been proposed for the microstructure and texture formation during solidification and phase transformation. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of widely used Ni-Ti-based shape memory alloys (SMAs) are highly sensitive to the underlying microstructure. Hence, controlling the evolution of microstructure during high-temperature deformation becomes important. In this article, the ``processing maps'' approach is utilized to identify the combination of temperature and strain rate for thermomechanical processing of a Ni(42)Ti(50)Cu(8) SMA. Uniaxial compression experiments were conducted in the temperature range of 800-1050 degrees C and at strain rate range of 10(-3) and 10(2) s(-1). Two-dimensional power dissipation efficiency and instability maps have been generated and various deformation mechanisms, which operate in different temperature and strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results show that the safe window for industrial processing of this alloy is in the range of 800-850 degrees C and at 0.1 s(-1), which leads to grain refinement and strain-free grains. Regions of the instability were identified, which result in strained microstructure, which in turn can affect the performance of the SMA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wear resistant coatings were produced on a permanent mould cast MRI 230D Mg alloy by (a) PEO in silicate based electrolyte, (b) PEO in phosphate based electrolyte, (c) hybrid coatings of silicate PEO followed by laser surface alloying (LSA) with Al and Al(2)O(3), and (d) hybrid coatings of phosphate PEO followed by LSA with Al and Al(2)O(3). Microstructural characterization of the coatings was carried out by scanning electron microscopy (SEM) and X(ray diffraction. The tribological behavior of the coatings was investigated under dry sliding condition using linearly reciprocating ball-on-flat wear test. Both the PEO coatings exhibited a friction coefficient of about 0.8 and hybrid coatings exhibited a value of about 0.5 against the AISI 52100 steel ball as the friction partner, which were slightly reduced with the increase in applied load. The PEO coatings sustained the test without failure at 2 N load but failed at 5 N load due to micro-fracture caused by high contact stresses. The hybrid coatings did not get completely worn off at 2 N load but were completely removed exposing the substrate at 5 N load. The PEO coatings exhibited better wear resistance than the hybrid coatings and silicate PEO coatings exhibited better wear resistance than the phosphate PEO coatings. Both the PEO coatings melted/decomposed on laser irradiation and all the hybrid coatings exhibited similar microstructure and wear behavior irrespective of the nature of the primary PEO coating or laser energies. SEM examination of worn surfaces indicated abrasive wear combined with adhesive wear for all the specimens. The surface of the ball exhibited a discontinuous transfer layer after the wear test. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solid oxide galvanic cell and a gas-solid (View the MathML source) equilibration technique have been used to measure the activities of the solutes in the α-solid solutions of silver with indium and tin. The results are consistent with the information now available for the corresponding liquid alloys, the phase diagram and the heats of mixing of the solid alloy. When the results of this study are taken together with published data for the α-solid solutions in Ag + Cd system, it is found that the variation of the excess partial free energy of the solute with mole fraction can be correlated to the electron/atom ratio. The significant thennodynamic parameter that explains the Hume-Rothery findings in these alloys appears to be the rate of change of the excess partial free energy with composition near the phase boundary, and this in turn reflects the value of the solute-solute interaction energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxygen content of liquid Ni-Mn alloy equilibrated with spinel solid solution, (Ni,Mn)O. (1 +x)A12O3, and α-Al2O3 has been measured by suction sampling and inert gas fusion analysis. The corresponding oxygen potential of the three-phase system has been determined with a solid state cell incorporating (Y2O3)ThO2 as the solid electrolyte and Cr + Cr2O3 as the reference electrode. The equilibrium composition of the spinel phase formed at the interface of the alloy and alumina crucible was obtained using EPMA. The experimental data are compared with a thermodynamic model based on the free energies of formation of end-member spinels, free energy of solution of oxygen in liquid nickel, interaction parameters, and the activities in liquid Ni-Mn alloy and spinel solid solution. Mixing properties of the spinel solid solution are derived from a cation distribution model. The computational results agree with the experimental data on oxygen concentration, potential, and composition of the spinel phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized enthalpy update scheme is presented for evaluating solid and liquid fractions during the solidification of binary alloys, taking solid movement into consideration. A fixed-grid, enthalpy-based method is developed such that the scheme accounts for equilibrium as well as for nonequilibrium solidification phenomena, along with solid phase movement. The effect of solid movement on the solidification interface shape and macrosegregation is highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This short review compiles the studies on self assembled alkanethiol monolayers formed on silver surfaces with respect to their structure and stability. Alkanethiol-based assemblies on silver surfaces are poor cousins of thiol monolayers on gold. The formation of well-ordered monolayers on silver surfaces is relatively more difficult than the corresponding systems on gold since the inherent oxide film on silver interferes with the formation and stability of the assembly. There are contradictory reports on the nature and physicochemical characteristics of alkanethiol monolayers on silver surfaces. This review attempts to highlight various studies in the literature including our efforts in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an electrochemical route for the integration of graphene with light-sensitive copper-based alloys used in optoelectronic applications. Graphene grown using chemical vapor deposition (CVD) transferred to glass is found to be a robust substrate on which photoconductive CuxS films of 1-2 mu m thickness can be deposited. The effect of growth parameters on the morphology and photoconductivity of CuxS films is presented. Current-voltage (I-V) characterization and photoconductivity decay experiments are performed with graphene as one contact and silver epoxy as the other.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoindentation experiments were conducted on a Ni+ ion-irradiated Zr-based bulk metallic glass (BMG). The irradiation was carried out using 2.5, 5, 10 and 15 MeV ions and a flux of similar to 10(16) ions/cm(2). Post mortem imaging of the indents reveals a transition in the deformation mechanism of the irradiated regions from heterogeneous shear banding to homogeneous flow. Additionally, the load-displacement curves exhibit a transition from serrated to continuous flow with increasing severity of irradiation damage. The stress-strain response obtained from micro-pillar compression experiments complements the indentation response exhibiting a decrease in the flow stress and an `apparent' strain hardening at the lowest irradiation damage investigated, which is not observed in the as-cast alloy. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design of the required tool is a key and important parameter in the technique of friction stir welding (FSW). This is so because tool design does exert a close control over the quality of the weld. In an attempt to optimize tool design and its selection, it is essential and desirable to understand the mechanisms governing the formation of the weld. In this research study, few experiments were conducted to systematically analyze the intrinsic mechanisms governing the formation of the weld and to effectively utilize the analysis to establish a logical basis for design of the tool. For this purpose, the experiments were conducted using different geometries of the shoulder and pin of the rotating tool in such a way that only tool geometry had an intrinsic influence on formation of the weld. The results revealed that for a particular diameter of the pin there is an optimum diameter of the shoulder. Below this optimum shoulder diameter, the weld does not form while above the optimum diameter the overall symmetry of the weld is lost. Based on experimental results, a mechanism for the formation of friction stir weld is proposed. A synergism of the experimental results with the proposed mechanism is helpful in establishing the set of welding parameters for a given material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we present a colorimetric detection method for Cr (VI) in aqueous solution based on as synthesized silver nanoparticles (Ag NPs) without surface functionalization. The method principle involves reduction of Cr (VI) to Cr (III) by excess reductant present in as synthesized Ag NP dispersion, and subsequent aggregation of Ag NPs by Cr (III) leading to red-shift of the surface plasmon resonance (SPR) peak. The UV-vis absorption spectra. Zeta potentials, dynamic light scattering measurements, and scanning electron microscopy (SEM) confirmed the aggregation of the Ag NPs. Under the optimized conditions, a good linear relationship (correlation coefficient r=0.981) was obtained between the ratio of the absorbance at 550 nm to that at 390 nm (A(550/390)) and the concentration of Cr (VI) over the range of 10(-3)-10(-9) M 50 mg/L to 50 ng/L]. The reported probe has a limit of detection down to 1 nM, which, to the best of our knowledge, is the lowest ever reported for the colorimetric detection of Cr (VI). Furthermore, a remarkable feature of this method is that it involves a simple technique exhibiting high selectivity to Cr (VI) over other tested heavy metal ions. (C) 2012 Elsevier BM. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biopolymer used for the production of nanoparticles (NPs) has attracted increasing attention. In the presence article we use aqueous solution of polysaccharide Cyamopsis tetragonaloba commonly known as guar gum (GG), from plants. GG acts as reductive preparation of silver nanoparticles which are found to be <10. nm in size. The uniformity of the NPs size was measured by the SEM and TEM, while a face centered cubic structure of crystalline silver nanoparticles was characterized using powder X-ray diffraction technique. Aqueous ammonia sensing study of polymer/silver nanoparticles nanocomposite (GG/AgNPs NC) was performed by optical method based on surface plasmon resonance (SPR). The performances of optical sensor were investigated which provide the excellent result. The response time of 2-3. s and the detection limit of ammonia solution, 1. ppm were found at room temperature. Thus, in future this room temperature optical ammonia sensor can be used for clinical and medical diagnosis for detecting low ammonia level in biological fluids, such as plasma, sweat, saliva, cerebrospinal liquid or biological samples in general for various biomedical applications in human. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among all methods of metal alloy slurry preparation, the cooling slope method is the simplest in terms of design and process control. The method involves pouring of the melt from top, down an oblique and channel shaped plate cooled from bottom by counter flowing water. The melt, while flowing down, partially solidifies and forms columnar dendrites on plate wall. These dendrites are broken into equiaxed grains and are washed away with melt. The melt, together with the equiaxed grains, forms semisolid slurry collected at the slope exit and cast into billets having non-dendritic microstructure. The final microstructure depends on several process parameters such as slope angle, slope length, pouring superheat, and cooling rate. The present work involves scaling analysis of conservation equations of momentum, energy and species for the melt flow down a cooling slope. The main purpose of the scaling analysis is to obtain a physical insight into the role and relative importance of each parameter in influencing the final microstructure. For assessing the scaling analysis, the trends predicted by scaling are compared against corresponding numerical results using an enthalpy based solidification model with incorporation of solid phase movement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current study describes the evolution of microstructure and texture in an Al-Zn-Mg-Cu-Zr-based 7010 aluminum alloy during different modes of hot cross-rolling. Processing of materials involves three different types of cross-rolling. The development of texture in the one-step cross-rolled specimen can be described by a typical beta-fiber having the maximum intensity near Copper (Cu) component. However, for the multi-step cross-rolled specimens, the as-rolled texture is mainly characterized by a strong rotated-Brass (Bs) component and a very weak rotated-cube component. Subsequent heat treatment leads to sharpening of the major texture component (i.e., rotated-Bs). Furthermore, the main texture components in all the specimens appear to be significantly rotated in a complex manner away from their ideal positions because of non-symmetric deformations in the two rolling directions. Detailed microstructural study indicates that dynamic recovery is the dominant restoration mechanism operating during the hot rolling. During subsequent heat treatment, static recovery dominates, while a combination of particle-stimulated nucleation (PSN) and strain-induced grain boundary migration (SIBM) causes partial recrystallization of the grain structure. The aforementioned restoration mechanisms play an important role in the development of texture components. The textural development in the current study could be attributed to the combined effects of (a) cross-rolling and inter-pass annealing that reduce the intensity of Cu component after each successive pass, (b) recrystallization resistance of Bs-oriented grains, (c) stability of Bs texture under cross-rolling, and (d) Zener pinning by Al3Zr dispersoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Room temperature operation, low detection limit and fast response time are highly desirable for a wide range of gas sensing applications. However, the available gas sensors suffer mainly from high temperature operation or external stimulation for response/recovery. Here, we report an ultrasensitive-flexible-silver-nanoparticle based nanocomposite resistive sensor for ammonia detection and established the sensing mechanism. We show that the nanocomposite can detect ammonia as low as 500 parts-per-trillion at room temperature in a minute time. Furthermore, the evolution of ammonia from different chemical reactions has been demonstrated using the nanocomposite sensor as an example. Our results demonstrate the proof-of-concept for the new detector to be used in several applications including homeland security, environmental pollution and leak detection in research laboratories and many others.