979 resultados para siderurgy residue
Resumo:
Enterotoxigenic Escherichia coli associated with human diarrheal disease utilize any of a limited group of serologically distinguishable pili for attachment to intestinal cells. These include CS1 and CFA/I pili. We show here that chemical modification of arginyl residues in CS1 pili abolishes CS1-mediated agglutination of bovine erythrocytes, which serves as a model system for attachment. Alanine substitution of the single arginyl residue in CooA, the major pilin, had no effect on the assembly of pili or on hemagglutination. In contrast, substitution of alanine for R181 in CooD, the minor pilin associated with the pilus tip, abolished hemagglutination, and substitution of R20 reduced hemagglutination. Neither of these substitutions affected CS1 pilus assembly. This shows that CooD is essential for CS1-mediated attachment and identifies specific residues that are involved in receptor binding but not in pilus assembly. In addition to mediating agglutination of bovine erythrocytes, CFA/I also mediates agglutination of human erythrocytes. Substitution of R181 by alanine in the CooD homolog, CfaE, abolished both of these reactions. We conclude that the same region of the pilus tip protein is involved in adherence of CS1 and CFA/I pili, although their receptor specificities differ. This suggests that the region of the pilus tip adhesin protein that includes R181 might be an appropriate target for therapeutic intervention or for a vaccine to protect against human diarrhea caused by enterotoxigenic E. coli strains that have serologically different pili.
Resumo:
The scrapie prion protein (PrPSc) is the major, and possibly the only, component of the infectious prion; it is generated from the cellular isoform (PrPC) by a conformational change. N-terminal truncation of PrPSc by limited proteolysis produces a protein of ≈142 residues designated PrP 27–30, which retains infectivity. A recombinant protein (rPrP) corresponding to Syrian hamster PrP 27–30 was expressed in Escherichia coli and purified. After refolding rPrP into an α-helical form resembling PrPC, the structure was solved by multidimensional heteronuclear NMR, revealing many structural features of rPrP that were not found in two shorter PrP fragments studied previously. Extensive side-chain interactions for residues 113–125 characterize a hydrophobic cluster, which packs against an irregular β-sheet, whereas residues 90–112 exhibit little defined structure. Although identifiable secondary structure is largely lacking in the N terminus of rPrP, paradoxically this N terminus increases the amount of secondary structure in the remainder of rPrP. The surface of a long helix (residues 200–227) and a structured loop (residues 165–171) form a discontinuous epitope for binding of a protein that facilitates PrPSc formation. Polymorphic residues within this epitope seem to modulate susceptibility of sheep and humans to prion disease. Conformational heterogeneity of rPrP at the N terminus may be key to the transformation of PrPC into PrPSc, whereas the discontinuous epitope near the C terminus controls this transition.
Resumo:
Protein folding can be described in terms of the development of specific contacts between residues as a highly disordered polypeptide chain converts into the native state. Here we describe an NMR based strategy designed to detect such contacts by observation of nuclear Overhauser effects (NOEs). Experiments with α-lactalbumin reveal the existence of extensive NOEs between aromatic and aliphatic protons in the archetypal molten globule formed by this protein at low pH. Analysis of their time development provides direct evidence for near-native compactness of this state. Through a rapid refolding procedure the NOE intensity can be transferred efficiently into the resolved and assigned spectrum of the native state. This demonstrates the viability of using this approach to map out time-averaged interactions between residues in a partially folded protein.
Resumo:
The serotonin transporter (SERT) is a member of the Na+/Cl−-dependent neurotransmitter transporter family and constitutes the target of several clinically important antidepressants. Here, replacement of serine-545 in the recombinant rat SERT by alanine was found to alter the cation dependence of serotonin uptake. Substrate transport was now driven as efficiently by LiCl as by NaCl without significant changes in serotonin affinity. Binding of the antidepressant [3H]imipramine occurred with 1/5th the affinity, whereas [3H]citalopram binding was unchanged. These results indicate that serine-545 is a crucial determinant of both the cation dependence of serotonin transport by SERT and the imipramine binding properties of SERT.
Resumo:
A coarse-grained model for protein-folding dynamics is introduced based on a discretized representation of torsional modes. The model, based on the Ramachandran map of the local torsional potential surface and the class (hydrophobic/polar/neutral) of each residue, recognizes patterns of both torsional conformations and hydrophobic-polar contacts, with tolerance for imperfect patterns. It incorporates empirical rates for formation of secondary and tertiary structure. The method yields a topological representation of the evolving local torsional configuration of the folding protein, modulo the basins of the Ramachandran map. The folding process is modeled as a sequence of transitions from one contact pattern to another, as the torsional patterns evolve. We test the model by applying it to the folding process of bovine pancreatic trypsin inhibitor, obtaining a kinetic description of the transitions between the contact patterns visited by the protein along the dominant folding pathway. The kinetics and detailed balance make it possible to invert the result to obtain a coarse topographic description of the potential energy surface along the dominant folding pathway, in effect to go backward or forward between a topological representation of the chain conformation and a topographical description of the potential energy surface governing the folding process. As a result, the strong structure-seeking character of bovine pancreatic trypsin inhibitor and the principal features of its folding pathway are reproduced in a reasonably quantitative way.
Resumo:
Residue 225 in serine proteases of the chymotrypsin family is Pro or Tyr in more than 95% of nearly 300 available sequences. Proteases with Y225 (like some blood coagulation and complement factors) are almost exclusively found in vertebrates, whereas proteases with P225 (like degradative enzymes) are present from bacteria to human. Saturation mutagenesis of Y225 in thrombin shows that residue 225 affects ligand recognition up to 60,000-fold. With the exception of Tyr and Phe, all residues are associated with comparable or greatly reduced catalytic activity relative to Pro. The crystal structures of three mutants that differ widely in catalytic activity (Y225F, Y225P, and Y225I) show that although residue 225 makes no contact with substrate, it drastically influences the shape of the water channel around the primary specificity site. The activity profiles obtained for thrombin also suggest that the conversion of Pro to Tyr or Phe documented in the vertebrates occurred through Ser and was driven by a significant gain (up to 50-fold) in catalytic activity. In fact, Ser and Phe are documented in 4% of serine proteases, which together with Pro and Tyr account for almost the entire distribution of residues at position 225. The unexpected crucial role of residue 225 in serine proteases explains the evolutionary selection of residues at this position and shows that the structural determinants of protease activity and specificity are more complex than currently believed. These findings have broad implications in the rational design of enzymes with enhanced catalytic properties.
Resumo:
The conformational space annealing (CSA) method for global optimization has been applied to the 10-55 fragment of the B-domain of staphylococcal protein A (protein A) and to a 75-residue protein, apo calbindin D9K (PDB ID code 1CLB), by using the UNRES off-lattice united-residue force field. Although the potential was not calibrated with these two proteins, the native-like structures were found among the low-energy conformations, without the use of threading or secondary-structure predictions. This is because the CSA method can find many distinct families of low-energy conformations. Starting from random conformations, the CSA method found that there are two families of low-energy conformations for each of the two proteins, the native-like fold and its mirror image. The CSA method converged to the same low-energy folds in all cases studied, as opposed to other optimization methods. It appears that the CSA method with the UNRES force field, which is based on the thermodynamic hypothesis, can be used in prediction of protein structures in real time.
Resumo:
The NMR structures of three single-amino acid variants of the C-terminal domain of the human prion protein, hPrP(121–230), are presented. In hPrP(M166V) and hPrP(R220K) the substitution is with the corresponding residue in murine PrP, and in hPrP(S170N) it is with the corresponding Syrian hamster residue. All three substitutions are in the surface region of the structure of the cellular form of PrP (PrPC) that is formed by the C-terminal part of helix 3, with residues 218–230, and a loop of residues 166–172. This molecular region shows high species variability and has been implicated in specific interactions with a so far not further characterized “protein X,” and it is related to the species barrier for transmission of prion diseases. As expected, the three variant hPrP(121–230) structures have the same global architecture as the previously determined wild-type bovine, human, murine, and Syrian hamster prion proteins, but with the present study two localized “conformational markers” could be related with single amino acid exchanges. These are the length and quality of definition of helix 3, and the NMR-observability of the residues in the loop 166–172. Poor definition of the C-terminal part of helix 3 is characteristic for murine PrP and has now been observed also for hPrP(R220K), and NMR observation of the complete loop 166–172 has so far been unique for Syrian hamster PrP and is now also documented for hPrP(S170N).
Resumo:
The active-site cysteines of DsbA, the periplasmic disulfide-bond-forming enzyme of Escherichia coli, are kept oxidized by the cytoplasmic membrane protein DsbB. DsbB, in turn, is oxidized by two kinds of quinones (ubiquinone for aerobic and menaquinone for anaerobic growth) in the electron-transport chain. We describe the isolation of dsbB missense mutations that change a highly conserved arginine residue at position 48 to histidine or cysteine. In these mutants, DsbB functions reasonably well aerobically but poorly anaerobically. Consistent with this conditional phenotype, purified R48H exhibits very low activity with menaquinone and an apparent Michaelis constant (Km) for ubiquinone seven times greater than that of the wild-type DsbB, while keeping an apparent Km for DsbA similar to that of wild-type enzyme. From these results, we propose that this highly conserved arginine residue of DsbB plays an important role in the catalysis of disulfide bond formation through its role in the interaction of DsbB with quinones.
Resumo:
In vitro DNA-binding and transcription properties of σ54 proteins with the invariant Arg383 in the putative helix–turn–helix motif of the DNA-binding domain substituted by lysine or alanine are described. We show that R383 contributes to maintaining stable holoenzyme–promoter complexes in which limited DNA opening downstream of the –12 GC element has occurred. Unlike wild-type σ54, holoenzymes assembled with the R383A or R383K mutants could not form activator-independent, heparin-stable complexes on heteroduplex Sinorhizobium meliloti nifH DNA mismatched next to the GC. Using longer sequences of heteroduplex DNA, heparin-stable complexes formed with the R383K and, to a lesser extent, R383A mutant holoenzymes, but only when the activator and a hydrolysable nucleotide was added and the DNA was opened to include the –1 site. Although R383 appears inessential for polymerase isomerisation, it makes a significant contribution to maintaining the holoenzyme in a stable complex when melting is initiating next to the GC element. Strikingly, Cys383-tethered FeBABE footprinting of promoter DNA strongly suggests that R383 is not proximal to promoter DNA in the closed complex. This indicates that R383 is not part of the regulatory centre in the σ54 holoenzyme, which includes the –12 promoter region elements. R383 contributes to several properties, including core RNA polymerase binding and to the in vivo stability of σ54.
Resumo:
N-type Ca2+ channels can be inhibited by neurotransmitter-induced release of G protein βγ subunits. Two isoforms of Cav2.2 α1 subunits of N-type calcium channels from rat brain (Cav2.2a and Cav2.2b; initially termed rbB-I and rbB-II) have different functional properties. Unmodulated Cav2.2b channels are in an easily activated “willing” (W) state with fast activation kinetics and no prepulse facilitation. Activating G proteins shifts Cav2.2b channels to a difficult to activate “reluctant” (R) state with slow activation kinetics; they can be returned to the W state by strong depolarization resulting in prepulse facilitation. This contrasts with Cav2.2a channels, which are tonically in the R state and exhibit strong prepulse facilitation. Activating or inhibiting G proteins has no effect. Thus, the R state of Cav2.2a and its reversal by prepulse facilitation are intrinsic to the channel and independent of G protein modulation. Mutating G177 in segment IS3 of Cav2.2b to E as in Cav2.2a converts Cav2.2b tonically to the R state, insensitive to further G protein modulation. The converse substitution in Cav2.2a, E177G, converts it to the W state and restores G protein modulation. We propose that negatively charged E177 in IS3 interacts with a positive charge in the IS4 voltage sensor when the channel is closed and produces the R state of Cav2.2a by a voltage sensor-trapping mechanism. G protein βγ subunits may produce reluctant channels by a similar molecular mechanism.
Resumo:
The SecY/Sec61α family of membrane proteins are the central subunits of the putative protein translocation channel. We introduced random mutations into a segment of Escherichia coli SecY within its cytoplasmic domain 5, which was shown previously to be important for the SecA-dependent translocation activity. Mutations were classified into those retaining function and those gaining a dominant-interfering ability caused by a loss of function. These analyses showed that Arg-357, Pro-358, Gly-359, and Thr-362 are functionally important; Arg-357, conserved in almost all organisms, was identified as an indispensable residue.
Resumo:
Illumination of vertebrate rod photoreceptors leads to a decrease in the cytoplasmic cGMP concentration and closure of cyclic nucleotide-gated (CNG) channels. Except for Ca2+, which plays a negative feedback role in adaptation, and 11-cis-retinal, supplied by the retinal pigment epithelium, all of the biochemical machinery of phototransduction is thought to be contained within rod outer segments without involvement of extrinsic regulatory molecules. Here we show that insulin-like growth factor-I (IGF-I), a paracrine factor released from the retinal pigment epithelium, alters phototransduction by rapidly increasing the cGMP sensitivity of CNG channels. The IGF-I-signaling pathway ultimately involves a protein tyrosine phosphatase that catalyzes dephosphorylation of a specific residue in the α-subunit of the rod CNG channel protein. IGF-I conjointly accelerates the kinetics and increases the amplitude of the light response, distinct from events that accompany adaptation. These effects of IGF-I could result from the enhancement of the cGMP sensitivity of CNG channels. Hence, in addition to long-term control of development and survival of rods, growth factors regulate phototransduction in the short term by modulating CNG channels.
Resumo:
cDNA fragments encoding the carboxyltransferase domain of the multidomain plastid acetyl-CoA carboxylase (ACCase) from herbicide-resistant maize and from herbicide-sensitive and herbicide-resistant Lolium rigidum were cloned and sequenced. A Leu residue was found in ACCases from herbicide-resistant plants at a position occupied by Ile in all ACCases from sensitive grasses studied so far. Leu is present at the equivalent position in herbicide-resistant ACCases from other eukaryotes. Chimeric ACCases containing a 1000-aa fragment of two ACCase isozymes found in a herbicide-resistant maize were expressed in a yeast ACC1 null mutant to test herbicide sensitivity of the enzyme in vivo and in vitro. One of the enzymes was resistant/tolerant, and one was sensitive to haloxyfop and sethoxydim, rendering the gene-replacement yeast strains resistant and sensitive to these compounds, respectively. The sensitive enzyme has an Ile residue, and the resistant one has a Leu residue at the putative herbicide-binding site. Additionally, a single Ile to Leu replacement at an equivalent position changes the wheat plastid ACCase from sensitive to resistant. The effect of the opposite substitution, Leu to Ile, makes Toxoplasma gondii apicoplast ACCase resistant to haloxyfop and clodinafop. In this case, inhibition of the carboxyltransferase activity of ACCase (second half-reaction) of a large fragment of the Toxoplasma enzyme expressed in Escherichia coli was tested. The critical amino acid residue is located close to a highly conserved motif of the carboxyltransferase domain, which is probably a part of the enzyme active site, providing the basis for the activity of fop and dim herbicides.
Resumo:
We have isolated the plasma membrane H+−ATPase in a phosphorylated form from spinach (Spinacia oleracea L.) leaf tissue incubated with fusicoccin, a fungal toxin that induces irreversible binding of 14–3–3 protein to the C terminus of the H+-ATPase, thus activating H+ pumping. We have identified threonine-948, the second residue from the C-terminal end of the H+-ATPase, as the phosphorylated amino acid. Turnover of the phosphate group of phosphothreonine-948 was inhibited by 14–3–3 binding, suggesting that this residue may form part of a binding motif for 14–3–3. This is the first identification to our knowledge of an in vivo phosphorylation site in the plant plasma membrane H+-ATPase.