976 resultados para short tandem repeat


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aberrant glycosylation of the mucin molecule (encoded by the gene MUC-1) on human epithelial cell tumors leads to the exposure of tumor-associated epitopes recognized by patients' antibodies and cytotoxic T cells. Consequently, these epitopes could be considered targets for immunotherapy. We designed a cellular vaccine, employing, instead of tumor cells, autologous Epstein-Barr virus (EBV)-immortalized B cells as carriers of tumor-associated mucin, to take advantage of their costimulatory molecules for T-cell activation. The vaccine was tested in chimpanzees because of the identity of the human and chimpanzee MUC-1 tandem repeat sequence. EBV-immortalized B cells derived from two chimpanzees were transfected with MUC-1 cDNA, treated with glycosylation inhibitor phenyl-N-acetyl-alpha-D-galactosaminide to expose tumor-associated epitopes, irradiated, and injected subcutaneously four times at 3-week intervals. One vaccine preparation also contained cells transduced with the interleukin 2 (IL-2) cDNA and producing low levels of IL-2. Already after the first injection we found in the peripheral blood measurable frequency of cytotoxic T-cell precursors specific for underglycosylated mucin. The highest frequency observed was after the last boost, in the lymph node draining the vaccination site. Delayed-type hypersensitivity reaction to the injected immunogens was also induced, whereas no appearance of mucin-specific antibodies was seen. Long-term observation of the animals yielded no signs of adverse effects of this immunization. Autologous antigen-presenting cells, like EBV-immortalized B cells, expressing tumor-associated antigens are potentially useful immunogens for induction of cellular anti-tumor responses in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By using an expression cloning strategy, we isolated a single positive clone encoding a tilapia prolactin (PRL) receptor. Tilapia PRL188 was used to screen a freshwater tilapia kidney expression library transfected in COS cells. The tilapia PRL receptor is a mature protein of 606 amino acids. The extracellular domain is devoid of the tandem repeat units present in birds and has two pairs of cysteine residues, a Trp-Ser-Xaa-Trp-Ser motif, and two potential N-glycosylation sites. The cytoplasmic domain contains 372 amino acids, including box 1, a sequence previously shown to be important for signal transduction in mammalian species. Thus, the general structure is similar to the long form of mammalian PRL receptors; however, amino acid comparisons reveal a rather low identity (approximately 37%). Northern blot analysis shows the existence of a single transcript in osmoregulatory tissues and reproductive organs. This localization is in agreement with known functions of PRL in teleosts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The pathogenic Gram-positive bacterium Streptococcus pyogenes (group A streptococcus) is the causative agent of numerous suppurative diseases of human skin. The M protein of S. pyogenes mediates the adherence of the bacterium to keratinocytes, the most numerous cell type in the epidermis. In this study, we have constructed and analyzed a series of mutant M proteins and have shown that the C repeat domain of the M molecule is responsible for cell recognition. The binding of factor H, a serum regulator of complement activation, to the C repeat region of M protein blocked bacterial adherence. Factor H is a member of a large family of complement regulatory proteins that share a homologous structural motif termed the short consensus repeat. Membrane cofactor protein (MCP), or CD46, is a short consensus repeat-containing protein found on the surface of keratinocytes, and purified MCP could competitively inhibit the adherence of S. pyogenes to these cells. Furthermore, the M protein was found to bind directly to MCP, whereas mutant M proteins that lacked the C repeat domain did not bind MCP, suggesting that recognition of MCP plays an important role in the ability of the streptococcus to adhere to keratinocytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report genetic characterization of isochromosome 18p using a combination of cytogenetic and molecular genetic methods, including multiplex fluorescent PCR. The patient was referred for chorionic villus sampling (CVS) due to advanced maternal age and maternal anxiety. The placental karyotype was 47,XX,+mar, with the marker having the appearance of a small supernumerary isochromosome. Because differentiating between isochromosomes and other structural rearrangements is normally very difficult, a variety of genetic tests including fluorescence in situ hybridization (FISH), PCR, and multiplex fluorescent PCR were undertaken to determine chromosomal origin and copy number and, thus, allow accurate diagnosis of the corresponding syndrome. FISH determined that the marker chromosome contained chromosome 18 material. PCR of a variety of short tandem repeats (STRs) confirmed that there was at least one extra copy of the maternal 18p material. However, neither FISH nor PCR could accurately determine copy number. Multiplex fluorescent PCR (MF-PCR) of STRs simultaneously determined that: (1) the marker included 18p material; (2) the marker was maternal in origin; (3) allele copy number indicated tetrasomy; and (4) contamination of the sample could be ruled out. Results were also rapid with accurate diagnosis of the syndrome tetrasomy 18p possible within 5 hours.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human social organization can deeply affect levels of genetic diversity. This fact implies that genetic information can be used to study social structures, which is the basis of ethnogenetics. Recently, methods have been developed to extract this information from genetic data gathered from subdivided populations that have gone through recent spatial expansions, which is typical of most human populations. Here, we perform a Bayesian analysis of mitochondrial and Y chromosome diversity in three matrilocal and three patrilocal groups from northern Thailand to infer the number of males and females arriving in these populations each generation and to estimate the age of their range expansion. We find that the number of male immigrants is 8 times smaller in patrilocal populations than in matrilocal populations, whereas women move 2.5 times more in patrilocal populations than in matrilocal populations. In addition to providing genetic quantification of sex-specific dispersal rates in human populations, we show that although men and women are exchanged at a similar rate between matrilocal populations, there are far fewer men than women moving into patrilocal populations. This finding is compatible with the hypothesis that men are strictly controlling male immigration and promoting female immigration in patrilocal populations and that immigration is much less regulated in matrilocal populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pro- and anti-fibrotic cytokine gene polymorphisms may affect expression of idiopathic pulmonary fibrosis (IPF). The aims of the present case-control study were to examine polymorphisms in the IL-6, transforming growth factor (TGF)-beta1, tumour necrosis factor (TNF)-alpha and interleukin-1 (IL-1)Ra genes in patients with IPF (n=22)-compared to healthy controls (n=140). Genotyping was performed on DNA extracted from peripheral blood lymphocytes, using polymerase chain reaction-restriction fragment length polymorphism with gene polymorphisms determined according to-published techniques. The following sites were examined: (i) IL-1Ra*1-5 (86 bp variable tandem repeat intron 2), (ii) IL-6 (-174G>C), (iii) TNF-alpha (-308G>A) and (iv) TGF-beta1 (Arg25Pro). The TNF-alpha (-308 A) allele was over-represented in the IPF (p(corr)=0.004) group compared to controls. Risk of IPF was significant for heterozygotes for: (i) the TNF-alpha (-308 A) allele (A/G) (odds ratio (OR) 2.9; 95% confidence interval (CI) 1.2-7.2; P=0.02), (ii) homozygotes (A/A) (OR 13.9; 95%CI 1.2-160; P=0.04) and (iii) carriage of the allele (A/A+A/G) (OR 4; 95%CI 1.6-10.2; P=0.003). The distribution of alleles and genotypes for IL-6, TGF-beta1 and IL-1Ra between the two groups was not significantly different. This is the third study to independently confirm that there is a significant association of the TNF-alpha (-308 A) allele with IPF. Further research is needed to assess the utility of cytokine gene polymorphisms as markers of disease-susceptibility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the clinical characteristics of a schizophrenia sample of 409 pedigrees-263 of European ancestry ( EA) and 146 of African American ancestry ( AA)-together with the results of a genome scan ( with a simple tandem repeat polymorphism interval of 9 cM) and follow-up fine mapping. A family was required to have a proband with schizophrenia ( SZ) and one or more siblings of the proband with SZ or schizoaffective disorder. Linkage analyses included 403 independent full-sibling affected sibling pairs ( ASPs) ( 279 EA and 124 AA) and 100 all-possible half-sibling ASPs ( 15 EA and 85 AA). Nonparametric multipoint linkage analysis of all families detected two regions with suggestive evidence of linkage at 8p23.3-q12 and 11p11.2-q22.3 ( empirical Z likelihood-ratio score [ Z(lr)] threshold >= 2.65) and, in exploratory analyses, two other regions at 4p16.1-p15.32 in AA families and at 5p14.3-q11.2 in EA families. The most significant linkage peak was in chromosome 8p; its signal was mainly driven by the EA families. Z(lr) scores >= 2.0 in 8p were observed from 30.7 cM to 61.7 cM ( Center for Inherited Disease Research map locations). The maximum evidence in the full sample was a multipoint Z(lr) of 3.25 ( equivalent Kong-Cox LOD of 2.30) near D8S1771 ( at 52 cM); there appeared to be two peaks, both telomeric to neuregulin 1 ( NRG1). There is a paracentric inversion common in EA individuals within this region, the effect of which on the linkage evidence remains unknown in this and in other previously analyzed samples. Fine mapping of 8p did not significantly alter the significance or length of the peak. We also performed fine mapping of 4p16.3-p15.2, 5p15.2-q13.3, 10p15.3-p14, 10q25.3-q26.3, and 11p13-q23.3. The highest increase in Z(lr) scores was observed for 5p14.1-q12.1, where the maximum Z(lr) increased from 2.77 initially to 3.80 after fine mapping in the EA families.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microvariant allelic polymorphisms have been known since 1966 when Harris, Hubby and Lewontin described the huge store of genetic variation detectable at the polypeptide level. Later Jeffreys used MVR (minisatellite variant repeat) analysis to describe the variation hidden within minisatellite VNTRs and to propose a mutational mechanism.^ The questions I have asked follow these traditions: (1) How much microvariant polymorphism exists at the discrete allele minisatellite D1S80 locus? (2) Do alleles or groups of alleles associate randomly with the flanking markers to form haplotypes? (3) What mechanisms might explain mutations at this locus? What are the phylogenetic relationships among the alleles?^ The minisatellite locus D1S80 (1p35-36), GenBank sequence (Accession # D28507), is a highly polymorphic Variable Number of Tandem Repeat (VNTR) based on a 16 base core. D1S80 alleles are electrophoretically separable into discontinuous sets of equivalent length alleles. Sequence variation or minor length variation within these classes was expected: I have sought to determine the nature of this microvariant heterogeneity by sequencing nominal and variant alleles.^ Alleles were analyzed by Single-Strand Conformation Polymorphism (SSCP) analysis. Sequences were determined to ascertain whether sequence variation or size variation is the major cause of altered electrophoretic migration of microvariant D1S80 alleles. Twenty three alleles from 14 previously typed individuals were sequenced. The individuals were from African American, Caucasian, or Hispanic databases.^ A Tsp509 I restriction site, previously reported as a Hinf I flanking polymorphism, and a 3$\sp\prime$ flanking region BsoF I restriction site polymorphism were identified. There appears to be a strong association of the 5$\sp\prime$ flanking region Hinf I(+) and Tsp509 I(-) site and the 3$\sp\prime$ flanking region BsoF I(-) site with the 18 allele, while the 24 tends to be associated with the Hinf I(-), Tsp509 I(+) and BsoF I(+) sites.^ The general conclusion for this locus is clearly the closer you look, the more you find. D1S80 allelic polymorphisms are primarily due to variation in the number of repeat units and to sequence variation among repeats. The sequenced based gene tree depicts two major classes of alleles which conform to the two most common alleles, reflecting either equivalent age or population size bottlenecks. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present body of work two primary subjects have been addressed, both individually and in their correspondence, namely (1) the potential for Neanderthals to have contributed to the Modern Human population, and (2) the genetic diversity of one of the most prehistorically impactful human popuations, the Armenians. The first subject is addressed by assessing 1000 mutations in 384 current humans, particularly for those mutations which appear to derive from the Neanderthal lineage. Additionally, the validity of the Neanderthal sequences themselves is evaluated through alignment analysis of fragementary DNA derived from the Vindija Cave sample. Armenian genetic diversity is analyzed through the autosomal short tandem repeats, y-chromsome single nucleotide polymorphisms, and y-chromosome short tandem repeats. The diversity found indicates that Armenians are a diverse group which has been genetically influenced by the various migrations and invasions which have entered their historic lands. Further, we find evidence that Armenians may be closely associated with the peopling of Europe.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The highly polymorphic DlS80 locus has no known genetic function. This variable number of tandem repeat (VNTR) has been valuable in forensic identification. We have obtained allelic and genotypic frequencies for five African populations (Benin, Cameroon, Egypt, Kenya and Rwanda), which could be employed as databases to identify individuals. The polymerase chain reaction, followed by vertical polyacrylamide gel electrophoresis and silver staining was our method of analysis. Allele frequencies were used to infer genetic associations using Phylip 3.5, Principal Component and G-test statistical programs. Tests for Hardy-Weinberg equilibrium were employed. Fst estimates and power of discrimination values were also determined for each of our populations. Our analyses of 28 additional populations demonstrated that the D1 S80 locus alone provided for the discrimination of major racial groups. Genetic homogeneity between the African groups was observed. We have generated a database useful for human differentiation and phylogenetic studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arginase 1 deficiency, a urea cycle disorder resulting from an inability of the body to convert arginine into urea, results in hyperargininemia and sporadic episodes of hyperammonemia. Arginase 1 deficiency can lead to a range of developmental disorders and progressive spastic diplegia in children, and current therapeutic options are limited. Clustered regularly interspaced short palindromic repeat (CRISPR) /CRISPR associated protein (Cas) 9 gene editing systems serve as a novel means of treating genetic disorders such as Arginase 1 (ARG1) deficiency, and must be thoroughly examined to determine their curative capabilities. In these experiments numerous guide RNAs and CRISPR/Cas9 systems targeting the ARG1 gene were designed and observed by heteroduplex assay for their targeting capabilities and cleavage efficiencies in multiple cell lines. The CRISPR/Cas9 system utilized in these experiments, along with a panel of guide RNAs targeting various locations in the arginase 1 gene, successfully produced targeted cleavage in HEK293, MCF7, A549, K562, HeLa, and HepG2 cells; however, targeted cleavage in human dermal fibroblasts, blood outgrowth endothelial cells, and induced pluripotent stem cells was not observed. Additionally, a CRISPR/Cas system involving partially inactivated Cas9 was capable of producing targeted DNA cleavage in intron 1 of ARG1, while a Cas protein termed Cpf1 was incapable of producing targeted cleavage. These results indicate a complex set of variables determining the CRISPR/Cas9 systems’ capabilities in the cell lines and primary cells tested. By examining epigenetic factors and alternative CRISPR/Cas9 gene targeting systems, the CRISPR/Cas9 system can be more thoroughly considered in its ability to act as a means towards editing the genome of arginase 1-deficient individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acquired resistance to selective FLT3 inhibitors is an emerging clinical problem in the treatment of FLT3-ITD(+) acute myeloid leukaemia (AML). The paucity of valid pre-clinical models has restricted investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. We generated selective FLT3 inhibitor-resistant cells by treating the FLT3-ITD(+) human AML cell line MOLM-13 in vitro with the FLT3-selective inhibitor MLN518, and validated the resistant phenotype in vivo and in vitro. The resistant cells, MOLM-13-RES, harboured a new D835Y tyrosine kinase domain (TKD) mutation on the FLT3-ITD(+) allele. Acquired TKD mutations, including D835Y, have recently been identified in FLT3-ITD(+) patients relapsing after treatment with the novel FLT3 inhibitor, AC220. Consistent with this clinical pattern of resistance, MOLM-13-RES cells displayed high relative resistance to AC220 and Sorafenib. Furthermore, treatment of MOLM-13-RES cells with AC220 lead to loss of the FLT3 wild-type allele and the duplication of the FLT3-ITD-D835Y allele. Our FLT3-Aurora kinase inhibitor, CCT137690, successfully inhibited growth of FLT3-ITD-D835Y cells in vitro and in vivo, suggesting that dual FLT3-Aurora inhibition may overcome selective FLT3 inhibitor resistance, in part due to inhibition of Aurora kinase, and may benefit patients with FLT3-mutated AML.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rumen is home to a diverse population of microorganisms encompassing all three domains of life: Bacteria, Archaea, and Eukarya. Viruses have also been documented to be present in large numbers; however, little is currently known about their role in the dynamics of the rumen ecosystem. This research aimed to use a comparative genomics approach in order to assess the potential evolutionary mechanisms at work in the rumen environment. We proposed to do this by first assessing the diversity and potential for horizontal gene transfer (HGT) of multiple strains of the cellulolytic rumen bacterium, Ruminococcus flavefaciens, and then by conducting a survey of rumen viral metagenome (virome) and subsequent comparison of the virome and microbiome sequences to ascertain if there was genetic information shared between these populations. We hypothesize that the bacteriophages play an integral role in the community dynamics of the rumen, as well as driving the evolution of the rumen microbiome through HGT. In our analysis of the Ruminococcus flavefaciens genomes, there were several mobile elements and clustered regularly interspaced short palindromic repeat (CRISPR) sequences detected, both of which indicate interactions with bacteriophages. The rumen virome sequences revealed a great deal of diversity in the viral populations. Additionally, the microbial and viral populations appeared to be closely associated; the dominant viral types were those that infect the dominant microbial phyla. The correlation between the distribution of taxa in the microbiome and virome sequences as well as the presence of CRISPR loci in the R. flavefaciens genomes, suggested that there is a “kill-the-winner” community dynamic between the viral and microbial populations in the rumen. Additionally, upon comparison of the rumen microbiome and rumen virome sequences, we found that there are many sequence similarities between these populations indicating a potential for phage-mediated HGT. These results suggest that the phages represent a gene pool in the rumen that could potentially contain genes that are important for adaptation and survival in the rumen environment, as well as serving as a molecular ‘fingerprint’ of the rumen ecosystem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Résumé : Les télomères sont des structures nucléoprotéiques spécialisées qui assurent la stabilité du génome en protégeant les extrémités chromosomiques. Afin d’empêcher des activités indésirables, la réparation des dommages à l’ADN doit être convenablement régulée au niveau des télomères. Pourtant, il existe peu d’études de la réparation des dommages induits par les ultraviolets (UVs) dans un contexte télomérique. Le mécanisme de réparation par excision de nucléotides (NER pour « Nucleotide Excision Repair ») permet d’éliminer les photoproduits. La NER est un mécanisme très bien conservé de la levure à l’humain. Elle est divisée en deux sous voies : une réparation globale du génome (GG-NER) et une réparation couplée à la transcription (TC-NER) plus rapide et plus efficace. Dans notre modèle d’étude, la levure Saccharomyces cerevisiae, une forme compactée de la chromatine nommée plus fréquemment « hétérochromatine » a été décrite. Cette structure particulière est présente entre autres, au niveau des régions sous-télomériques des extrémités chromosomiques. La formation de cette chromatine particulière implique quatre protéines nommées Sir (« Silent Information Regulator »). Elle présente différentes marques épigénétiques dont l’effet est de réprimer la transcription. L’accès aux dommages par la machinerie de réparation est-il limité par cette chromatine compacte ? Nous avons donc étudié la réparation des lésions induites par les UVs dans différentes régions associées aux télomères, en absence ou en présence de protéines Sir. Nos données ont démontré une modulation de la NER par la chromatine, dépendante des nucléosomes stabilisés par les Sir, dans les régions sous-télomériques. La NER était moins efficace dans les extrémités chromosomiques que dans les régions plus proches du centromère. Cet effet était dépendant du complexe YKu de la coiffe télomérique, mais pas dépendant des protéines Sir. La transcription télomériques pourrait aider la réparation des photoproduits, par l’intermédiaire de la sous-voie de TC-NER, prévenant ainsi la formation de mutations dans les extrémités chromosomiques. Des ARN non codants nommés TERRA sont produits mais leur rôle n’est pas encore clair. Par nos analyses, nous avons confirmé que la transcription des TERRA faciliterait la NER dans les différentes régions sous-télomériques.