992 resultados para shape memory alloy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper summarizes some of our recent results on crystal structure, microstructure, orientation relationship between martensitic variants and crystallographic features of martensitic transformation in Ni-Mn-Ga FSMAs. It was shown that Ni53Mn25Ga22 has a tetragonal I4/mmm martensitic structure at room temperature. The neighboring martensitic variants in Ni53Mn25Ga22 have a compound twinning relationship with the twinning elements K1={112}, K2={11-2}, η1=<11-1>, η2=<111>, P={1-10} and s=0.379. The ratio of the relative amounts of twins within the same initial austenite grain is ~1.70. The main orientation relationship between austenite and martensite is Kurdjumov-Sachs (K-S) relationship. Based on the crystallographic phenomenological theory, the calculated habit plane is {0.690 -0.102 0.716}A (5.95° from {101}A), and the magnitude, direction and shear angle of the macroscopic transformation shear are 0.121, <-0.709 0.105 0.698>A (6.04° from <-101>A) and 6.88°, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by _3 to 40 _C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further _3 to 10 _C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solidstate phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental study on the indentation hardness of NiTi shape memory alloys (SMAs) by using a spherical indenter tip and a finite element investigation to understand the experimental results are presented in this paper. It is shown that the spherical indentation hardness of NiTi SMAs increases with the indentation depth. The finding is contrary to the recent study on the hardness of NiTi SMAs using a sharp Berkovich indenter tip, where the interfacial energy plays a dominant role at small indentation depths. Our numerical investigation indicates that the influence of the interfacial energy is not significant on the spherical indentation hardness of SMAs. Furthermore, the depth dependency of SMA hardness under a spherical indenter is explained by the elastic spherical contact theory incorporating the deformation effect of phase transformation of SMAs. Hertz theory for purely elastic contact shows that the spherical hardness increases with the square root of the indentation depth. The phase transformation beneath the spherical tip weakens the depth effect of a purely elastic spherical hardness. This study enriches our knowledge on the basic concept of hardness for SMAs under spherical indentation at micro- and nanoscales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research investigates the design, activation and modelling of a new generation of hybrid materials; called shape memory alloy-composites. These hybrid materials exhibit reversible bending motion with a temperature change and have the potential to be employed in aerospace, automotive and robotic application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shape memory alloys (SMAs) provide a compact and effective actuation for a variety of mechanical systems. In this paper, a numerical simulation study of a three degree of-freedom airfoil, subjected to two-dimensional incompressible inviscid flow using a SMA is presented. SMA wire actuators are used to control the flap movement of a wing section. Through the thermo-mechanical constitutive equation of the SMA proposed by Brison, we simulate numerically the behavior of a double SMA wire actuator. Two SMA actuators are used: one to move the flap down and the other to move the flap up. Through the numerical results conducted in the present study, the behavior and characteristics of an SMA actuator with two SMA wires are shown the effectiveness of the SMA actuator. In conclusion, this paper shows the feasibility of using SMA wire actuators for flap movement, with success

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and demonstrate a technique for monitoring the recovery deformation of the shape-memory polymers (SMP) using a surface-attached fiber Bragg grating (FBG) as a vector-bending sensor. The proposed sensing scheme could monitor the pure bending deformation for the SMP sample. When the SMP sample undergoes concave or convex bending, the resonance wavelength of the FBG will have red-shift or blue-shift according to the tensile or compressive stress gradient along the FBG. As the results show, the bending sensitivity is around 4.07  nm/cm−1. The experimental results clearly indicate that the deformation of such an SMP sample can be effectively monitored by the attached FBG not just for the bending curvature but also the bending direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article demonstrates the use of embedded fibre Bragg gratings as vector bending sensor to monitor two-dimensional shape deformation of a shape memory polymer plate. The shape memory polymer plate was made by using thermal-responsive epoxy-based shape memory polymer materials, and the two fibre Bragg grating sensors were orthogonally embedded, one on the top and the other on the bottom layer of the plate, in order to measure the strain distribution in both longitudinal and transverse directions separately and also with temperature reference. When the shape memory polymer plate was bent at different angles, the Bragg wavelengths of the embedded fibre Bragg gratings showed a red-shift of 50 pm/°caused by the bent-induced tensile strain on the plate surface. The finite element method was used to analyse the stress distribution for the whole shape recovery process. The strain transfer rate between the shape memory polymer and optical fibre was also calculated from the finite element method and determined by experimental results, which was around 0.25. During the experiment, the embedded fibre Bragg gratings showed very high temperature sensitivity due to the high thermal expansion coefficient of the shape memory polymer, which was around 108.24 pm/°C below the glass transition temperature (Tg) and 47.29 pm/°C above Tg. Therefore, the orthogonal arrangement of the two fibre Bragg grating sensors could provide a temperature compensation function, as one of the fibre Bragg gratings only measures the temperature while the other is subjected to the directional deformation. © The Author(s) 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusionless scoliosis surgery is an emerging treatment for idiopathic scoliosis as it offers theoretical advantages over current forms of treatment. Anterior vertebral stapling using a nitinol staple is one such treatment. Despite increasing interest in this technique, little is known about the effects on the spine following insertion, or the mechanism of action of the staple. The aims of this study were threefold; (1) to measure changes in the bending stiffness of a single motion segment following staple insertion, (2) to describe the forces that occur within the staple during spinal movement, and (3) to describe the anatomical changes that occur following staple insertion. Results suggest that staple insertion consistently decreased stiffness in all directions of motion. An explanation for the finding may be found in the outcomes of the strain gauge testing and micro-CT scan. The strain gauge testing showed that once inserted, the staple tips applied a baseline compressive force to the surrounding trabecular bone and vertebral end-plate. This finding would be consistent with the current belief that the clinical effect of the staples is via unilateral compression of the physis. Interestingly however, as each specimen progressed through the five cycles of each test, the baseline load on the staple tips gradually decreased, implying that the force at the staple tip-bone interface was decreasing. We believe that this was likely occurring as a result of structural damage to the trabecular bone and vertebral end-plate by the staple effectively causing ‘loosening’ of the staple. This hypothesis is further supported by the findings of the micro-CT scan. The pictures depict significant trabecular bone and physeal injury around the staple blades. These results suggest that the current hypothesis that stapling modulates growth through physeal compression may be incorrect, but rather the effect occurs through mechanical disruption of the vertebral growth plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusionless scoliosis surgery is an emerging treatment for idiopathic scoliosis as it offers theoretical advantages over current forms of treatment. Currently the treatment options for idiopathic scoliosis are observation, bracing and fusion. While brace treatment is non-invasive, and preserves the growth, motion, and function of the spine, it does not correct deformity and is only modestly successful in preventing curve progression. In adolescents who fail brace treatment, surgical treatment with an instrumented spinal fusion usually results in better deformity correction but is associated with substantially greater risk. Furthermore in younger patients requiring surgical treatment, fusion procedures are known to adversely effect the future growth of the chest and spine. Fusionless treatments have been developed to allow effective surgical treatment of patients with idiopathic scoliosis who are too young for fusion procedures. Anterior vertebral stapling is one such fusionless treatment which aims to modulate the growth of vertebra to allow correction of scoliosis whilst maintaining normal spinal motion The Mater Misericordiae Hospital in Brisbane has begun to use anterior vertebral stapling to treat patients with idiopathic scoliosis who are too young for fusion procedures. Currently the only staple approved for clinical use is manufactured by Medtronic Sofamor Danek (Memphis, TN). This thesis explains the biomechanical and anatomical changes that occur following anterior vertebral staple insertion using in vitro experiments performed on an immature bovine model. Currently there is a paucity of published information about anterior vertebral stapling so it is hoped that this project will provide information that will aid in our understanding of the clinical effects of staple insertion. The aims of this experimental study were threefold. The first phase was designed to determine the changes in the bending stiffness of the spine following staple insertion. The second phase was designed to measure the forces experienced by the staple during spinal movements. The third and final phase of testing was designed to describe the structural changes that occur to a vertebra as a consequence of staple insertion. The first phase of testing utilised a displacement controlled testing robot to compare the change in stiffness of a single spinal motion segment following staple insertion for the three basic spinal motions of flexion-extension, lateral bending, and axial rotation. For the second phase of testing strain gauges were attached to staples and used to measure staple forces during spinal movement. In the third and final phase the staples were removed and a testing specimen underwent micro-computed tomography (CT) scanning to describe the anatomical changes that occur following staple insertion. The displacement controlled testing showed that there was a significant decrease in bending stiffness in flexion, extension, lateral bending away from the staple, and axial rotation away from the staple following staple insertion. The strain gauge measurements showed that the greatest staple forces occurred in flexion and the least in extension. In addition, a reduction in the baseline staple compressive force was seen with successive loading cycles. Micro-CT scanning demonstrated that significant damage to the vertebral body and endplate occurred as a consequence of staple insertion. The clinical implications of this study are significant. Based on the findings of this project it is likely that the clinical effect of the anterior vertebral staple evaluated in this project is a consequence of growth plate damage (also called hemiepiphysiodesis) causing a partial growth arrest of the vertebra rather than simply compression of the growth plate. The surgical creation of a unilateral growth arrest is a well established treatment used in the management of congenital scoliosis but has not previously been considered for use in idiopathic scoliosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Fusionless scoliosis surgery is an early-stage treatment for idiopathic scoliosis which claims potential advantages over current fusion-based surgical procedures. Anterior vertebral stapling using a shape memory alloy staple is one such approach. Despite increasing interest in this technique, little is known about the effects on the spine following insertion, or the mechanism of action of the staple. The purpose of this study was to investigate the biomechanical consequences of staple insertion in the anterior thoracic spine, using in vitro experiments on an immature bovine model. Methods: Individual calf spine thoracic motion segments were tested in flexion, extension, lateral bending and axial rotation. Changes in motion segment rotational stiffness following staple insertion were measured on a series of 14 specimens. Strain gauges were attached to three of the staples in the series to measure forces transmitted through the staple during loading. A micro-CT scan of a single specimen was performed after loading to qualitatively examine damage to the vertebral bone caused by the staple. Findings: Small but statistically significant decreases in bending stiffness occurred in flexion,extension, lateral bending away from the staple, and axial rotation away from the staple. Each strain-gauged staple showed a baseline compressive loading following insertion which was seen to gradually decrease during testing. Post-test micro-CT showed substantial bone and growth plate damage near the staple. Interpretation: Based on our findings it is possible that growth modulation following staple insertion is due to tissue damage rather than sustained mechanical compression of the motion segment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Intervertebral stapling is a leading method of fusionless scoliosis treatment which attempts to control growth by applying pressure to the convex side of a scoliotic curve in accordance with the Hueter-Volkmann principle. In addition to that, staples have the potential to damage surrounding bone during insertion and subsequent loading. The aim of this study was to assess the extent of bony structural damage including epiphyseal injury as a result of intervertebral stapling using an in vitro bovine model. Materials and Methods Thoracic spines from 6-8 week old calves were dissected and divided into motion segments including levels T4-T11 (n=14). Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second for 10 cycles. The segments were initially tested uninstrumented with data collected from the tenth load cycle. Next an anterolateral 4-prong Shape Memory Alloy (SMA) staple (Medtronic Sofamor Danek, USA) was inserted into each segment. Biomechanical testing was repeated as before. The staples were cut in half with a diamond saw and carefully removed. Micro-CT scans were performed and sagittal, transverse and coronal reformatted images were produced using ImageJ (NIH, USA).The specimens were divided into 3 grades (0, 1 and 2) according to the number of epiphyses damaged by the staple prongs. Results: There were 9 (65%) segments with grade 1 staple insertions and 5 (35%) segments with grade 2 insertions. There were no grade 0 staples. Grade 2 spines had a higher stiffness level than grade 1 spines, in all axes of movement, by 28% (p=0.004). This was most noted in flexion/extension with an increase of 49% (p=0.042), followed by non-significant change in lateral bending 19% (p=0.129) and axial rotation 8% (p=0.456) stiffness. The cross sectional area of bone destruction from the prongs was only 0.4% larger in the grade 2 group compared to the grade 1 group (p=0.961). Conclusion Intervertebral staples cause epiphyseal damage. There is a difference in stiffness between grade 1 and grade 2 staple insertion segments in flexion/extension only. There is no difference in the cross section of bone destruction as a result of prong insertion and segment motion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction There is growing interest in the biomechanics of ‘fusionless’ implant constructs used for deformity correction in the thoracic spine. Intervertebral stapling is a leading method of fusionless corrective surgery. Although used for a number of years, there is limited evidence as to the effect these staples have on the stiffness of the functional spinal unit. Materials and Methods Thoracic spines from 6-8 week old calves were dissected and divided into motion segments including levels T4-T11 (n=14). Each segment was potted in polymethylemethacrylate. An Instron Biaxial materials testing machine with a custom made jig was used for testing. The segments were tested in flexion/extension, lateral bending and axial rotation at 37⁰C and 100% humidity, using moment control to a maximum 1.75 Nm with a loading rate of 0.3 Nm per second. This torque was found sufficient to achieve physiologically representative ranges of movement. The segments were initially tested uninstrumented with data collected from the tenth load cycle. Next a left anterolateral Shape Memory Alloy (SMA) staple was inserted (Medtronic Sofamor Danek, USA). Biomechanical testing was repeated as before with data collected from the tenth load cycle. Results In flexion/extension there was an insignificant drop in stiffness of 3% (p=0.478). In lateral bending there was a significant drop in stiffness of 21% (p<0.001). This was mainly in lateral bending away from the staple, where the stiffness reduced by 30% (p<0.001). This was in contrast to lateral bending towards the staple where it dropped by 12% which was still statistically significant (p=0.036). In axial rotation there was an overall near significant drop in stiffness of 11% (p=0.076). However, this was more towards the side of the staple measuring a decrease of 14% as opposed to 8% away from the staple. In both cases it was a statistically insignificant drop (p=0.134 and p=0.352 respectively). Conclusion Insertion of intervertebral SMA staples results in a significant reduction in motion segment stiffness in lateral bending especially in the direction away from the staple. The staple had less effect on axial rotation stiffness and minimal effect on flexion/extension stiffness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis studied a new minimally invasive implant for scoliosis correction that aims to correct the deformity without fusing the spine, thereby allowing movement and growth in the spine following surgery. The effect of two different vertebral body implant (staple) designs on the stiffness of the spine, using calf spines as an in vitro model, was studied. The results showed that the implants decreased spinal stiffness, with associated potential damage to the growth plates due to the staple tips. There were no significant differences in stiffness between the two staple designs tested.