876 resultados para sensory authenticity
Resumo:
This study discusses a project undertaken to determine the benefits of sensory aids for hearing impaired children based on parental observations over a twelve month period.
Resumo:
This paper reviews a study to investigate how a hearing impaired person can learn to discriminate speech distorted by a low pass filter in a sensory aid.
Resumo:
This paper reviews a study to investigate how a hearing impaired person can learn to discriminate speech distorted by a low pass filter in a sensory aid.
Resumo:
Voltage-dependent Ca2+ channels (VDCCs) have emerged as targets to treat neuropathic pain; however, amongst VDCCs, the precise role of the CaV2.3 subtype in nociception remains unproven. Here, we investigate the effects of partial sciatic nerve ligation (PSNL) on Ca2+ currents in small/medium diameter dorsal root ganglia (DRG) neurones isolated from CaV2.3(−/−) knock-out and wild-type (WT) mice. DRG neurones from CaV2.3(−/−) mice had significantly reduced sensitivity to SNX-482 versusWTmice. DRGs from CaV2.3(−/−) mice also had increased sensitivity to the CaV2.2 VDCC blocker -conotoxin. In WT mice, PSNL caused a significant increase in -conotoxin-sensitivity and a reduction in SNX-482-sensitivity. In CaV2.3(−/−) mice, PSNL caused a significant reduction in -conotoxin-sensitivity and an increase in nifedipine sensitivity. PSNL-induced changes in Ca2+ current were not accompanied by effects on voltagedependence of activation in either CaV2.3(−/−) or WT mice. These data suggest that CaV2.3 subunits contribute, but do not fully underlie, drug-resistant (R-type) Ca2+ current in these cells. In WT mice, PSNL caused adaptive changes in CaV2.2- and CaV2.3-mediated Ca2+ currents, supporting roles for these VDCCs in nociception during neuropathy. In CaV2.3(−/−) mice, PSNL-induced changes in CaV1 and CaV2.2 Ca2+ current, consistent with alternative adaptive mechanisms occurring in the absence of CaV2.3 subunits.
Resumo:
Background: sip feeds are oral nutritional supplements (ONSs) that are commonly prescribed to malnourished patients to improve their nutritional and clinical status. However, ONSs are poorly consumed and frequently wasted, with sweetness being identified as one of the factors leading to patients’ dislike of ONSs. Objectives: to investigate if age affects sweetness thresholds and if this impacts upon perceived sweetness intensity, hedonic (sweetness and overall) and ranked preference of ONS products. Design: prospective, observational. Subjects: thirty-six young adults (18–33 years) and 48 healthy older adults (63–85 years). Setting: Department of Food and Nutritional Sciences and the Clinical Health Sciences at the University of Reading. Methods: detection and recognition threshold levels, basic taste identification and ‘just about right’ level of sweetness were examined. Three ONSs (chocolate, vanilla, strawberry) and sucrose solutions were evaluated for hedonic sweetness, overall hedonic liking, sweetness intensity and rank preference. Results: significant differences were found in both sweetness detection and recognition thresholds (P = 0.0001) between young and older adults, with older adults more likely to incorrectly identify the taste (P = 0.0001). Despite the deterioration in sweetness sensitivity among the older adults, there were no significant differences found in sweetness intensity perceived for the ONS products presented (P > 0.05) when compared with the young adults. However, across both groups sweetness intensity was found to be correlated with overall product dislike across all flavour variants tested (R = 0.398, P = 0.0001). Conclusions: sweetness appears to be one of many factors contributing to the dislike of ONSs. Manufacturers are encouraged to reconsider the formulations of these products so that beneficial effects of ONSs can be delivered in a more palatable and acceptable form and wastage reduced.
Resumo:
The vertebrate cranial sensory placodes are ectodermal embryonic patches that give rise to sensory receptor cells of the peripheral paired sense organs and to neurons in the cranial sensory ganglia. Their differentiation and the genetic pathways that underlay their development are now well understood. Their evolutionary history, however, has remained obscure. Recent molecular work, performed on close relatives of the vertebrates, demonstrated that some sensory placodes (namely the adenohypophysis, the olfactory, and accoustico-lateralis placodes) first evolved at the base of the chordate lineage, while others might be specific to vertebrates. Combined with morphological and cellular fate data, these results also suggest that the sensory placodes of the ancestor of all chordates differentiated into a wide range of structures, most likely to fit the lifestyle and environment of each species.
Molecular evidence from ascidians for the evolutionary origin of vertebrate cranial sensory placodes
Resumo:
Cranial sensory placodes are specialised areas of the head ectoderm of vertebrate embryos that contribute to the formation of the cranial sense organs and associated ganglia. Placodes are often considered a vertebrate innovation, and their evolution has been hypothesised as one key adaptation underlying the evolution of active predation by primitive vertebrates. Here, we review recent molecular evidence pertinent to understanding the evolutionary origin of placodes. The development of vertebrate placodes is regulated by numerous genes, including members of the Pax, Six, Eya, Fox, Phox, Neurogenin and Pou gene families. In the sea squirt Ciona intestinalis (a basal chordate and close relative of the vertebrates), orthologues of these genes are deployed in the development of the oral and atrial siphons, structures used for filter feeding by the sessile adult. Our interpretation of these findings is that vertebrate placodes and sea squirt siphon primordia have evolved from the same patches of specialised ectoderm present in the common ancestor of the chordates.
Resumo:
Cranial sensory placodes are focused areas of the head ectoderm of vertebrates that contribute to the development of the cranial sense organs and their associated ganglia. Placodes have long been considered a key character of vertebrates, and their evolution is proposed to have been essential for the evolution of an active predatory lifestyle by early vertebrates. Despite their importance for understanding vertebrate origins, the evolutionary origin of placodes has remained obscure. Here, we use a panel of molecular markers from the Six, Eya, Pax, Dach, FoxI, COE and POUIV gene families to examine the tunicate Ciona intestinalis for evidence of structures homologous to vertebrate placodes. Our results identify two domains of Ciona ectoderm that are marked by the genetic cascade that regulates vertebrate placode formation. The first is just anterior to the brain, and we suggest this territory is equivalent to the olfactoty/adenohypophyseal placodes of vertebrates. The second is a bilateral domain adjacent to the posterior brain and includes cells fated to form the atrium and atrial siphon of adult Ciona. We show this bares most similarity to placodes fated to form the vertebrate acoustico-lateralis system. We interpret these data as support for the hypothesis that sensory placodes did not arise de novo in vertebrates, but evolved froth pre-existing specialised areas of ectoderm that contributed to sensory organs in the common ancestor of vertebrate and tunicates. Published by Elsevier Inc.
Resumo:
The COE/EBF gene family marks a subset of prospective neurons in the vertebrate central and peripheral. nervous system; including neurons deriving from some ectodermal placodes. Since placodes are often considered unique to vertebrates, we have characterised an amphioxus COE/EBF gene with the aim of using it as a marker to examine the timing and location of peripheral neuron differentiation. A single COE/EBF family member, AmphiCoe, was isolated from the amphioxus Branchiostoma floridae: AmphiCoe lies basal to the vertebrate COE/EBF genes in molecular phylogenetic analysis, suggesting that the duplications that formed the vertebrate COE/EBF family were specific to the vertebrate lineage. AmphiCoe is expressed in the central nervous system and in a small number of scattered ectodermal cells on the flanks of neurulae stage embryos. These cells become at least largely recessed beneath the ectoderm. Scanning electron microscopy was used to examine embryos in which the ectoderm had been partially peeled away. This revealed that these cells have neuronal morphology, and we infer that they are the precursors of epidermal primary sensory neurons. These characters lead us to suggest that differentiation of some ectodermal cells into sensory neurons with a tendency to sink beneath the embryonic surface represents a primitive feature that has become incorporated into placodes during vertebrate evolution. (C) 2004 Wiley-Liss, Inc.
Resumo:
A wireless sensor network (WSN) is a group of sensors linked by wireless medium to perform distributed sensing tasks. WSNs have attracted a wide interest from academia and industry alike due to their diversity of applications, including home automation, smart environment, and emergency services, in various buildings. The primary goal of a WSN is to collect data sensed by sensors. These data are characteristic of being heavily noisy, exhibiting temporal and spatial correlation. In order to extract useful information from such data, as this paper will demonstrate, people need to utilise various techniques to analyse the data. Data mining is a process in which a wide spectrum of data analysis methods is used. It is applied in the paper to analyse data collected from WSNs monitoring an indoor environment in a building. A case study is given to demonstrate how data mining can be used to optimise the use of the office space in a building.
Vitamin E supplementation, cereal feed type and consumer sensory perceptions of poultry meat quality
Resumo:
Lipid oxidation leads to meat spoilage and has been reported to cause adverse changes in the flavour and texture of poultry meat. Vitamin E has been found to be effective in delaying lipid oxidation. The aim of this study was to determine whether the vitamin E supplementation of chicken feed influences the consumers' perception of the quality of chicken meat under normal display and storage conditions. Untrained consumers (n 32) evaluated cooked breast meat from chickens (both corn fed and wheat fed) supplemented with 75 250 or 500 mg/kg vitamin E and after storage at 4° C for 4 and 7 d. Factorial analysis found an interaction between vitamin E treatment and storage day upon the perceived juiciness (P = 0.023) and tenderness (P = 0.041) of the chicken meat. Perceptions of quality relative to vitamin E level were more evident on day 4 than day 7. When the two cereal types were compared, the time-related subgroup effects were observed only in meat from corn-fed chickens supplemented with either 75 or 250 mg/kg, which was perceived to be juicier (P = 0.018) and more tender (P = 0.020) than that supplemented at the 500 mg/kg level. These results imply that the two lower concentrations of vitamin E have some advantages over 500 mg/kg, but for optimal consumer acceptance of corn-fed chicken meat, we suggest that 250 mg/kg vitamin E should be added to corn-fed poultry feed. There was no evidence to suggest any advantages in changing the current amount of vitamin E (75 mg/kg) used to rear wheat-fed birds.