994 resultados para seeds and seedlings of Solanum


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The years of excessive use of thiabendazole to control Penicillium expansum has induced the development of resistance. Sensitivity of fourty eight strains collected from orchards and packinghouses in Emilia Romagna to pure and commercial TBZ was determined in vitro on TBZ amended medium (400μg/mL). Out of 48 strains, 35 were thiabendazole-sensitive (S) and 13 were thiabendazole-resistant (R). Microtiter assay adapted to P. expansum, showed EC50 values ranging from 54 to 320 μg/mL for ten TBZ-resistant strains. At the highest dose (50 μg/mL), resistant strains growth was not inhibited and the reported MICs value were >1000 μg/mL. Therefore, preliminary screening combined with microtiter assay, can be a good strategy to test susceptibility to TBZ. Mutations in the β-tubulin gene were studied on amino acid sequences from residue 167 to residue 357 of 10 P. expansum strains. Mutation at codon 198 was associated with TBZ-resistance. However, its absence in 3 resistant strains can be explained by the involvement of other mechanisms. Moreover, a P. expansum strain LB8/99 showed good antifungal effect against some fungal pathogens through double petri dish assay. It inhibited both mycelium growth and conidia germination of B. cinerea, C. acutatum, and M. laxa, and reduced significantly by 53% and 18% respectively P. expansum. Three major VOCS: geosmin, phenethyl alcolhol (PEA) and an unknown substance were identified by GC-MS analysis. Consistent fumigation of fungal pathogens with PEA (1230 mg/mL), inhibited both conidia germination and mycelium growth of all pathogens, except conidia germination of P. expansum that was reduced by 90% with respect to control. While, the concentration of PEA produced naturally by LB8/99 was ineffective in controlling the pathogens and seemed to have a synergic or additive effect with the other VOCS. Investigations to study the biofumigant effect of LB8/99 on other commodities like seeds and seedlings are in progress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Switchgrass (Panicum virgatum L.) is a perennial grass holding great promise as a biofuel resource. While Michigan’s Upper Peninsula has an appropriate land base and climatic conditions, there is little research exploring the possibilities of switchgrass production. The overall objectives of this research were to investigate switchgrass establishment in the northern edge of its distribution through: investigating the effects of competition on the germination and establishment of switchgrass through the developmental and competitive characteristics of Cave-in-Rock switchgrass and large crabgrass (Digitaria sanguinalis L.) in Michigan’s Upper Peninsula; and, determining the optimum planting depths and timing for switchgrass in Michigan’s Upper Peninsula. For the competition study, a randomized complete block design was installed June 2009 at two locations in Michigan’s Upper Peninsula. Four treatments (0, 1, 4, and 8 plants/m2) of crabgrass were planted with one switchgrass plant. There was a significant difference between switchgrass biomass produced in year one, as a function of crabgrass weed pressure. There was no significant difference between the switchgrass biomass produced in year two versus previous crabgrass weed pressure. There is a significant difference between switchgrass biomass produced in year one and two. For the depth and timing study, a completely randomized design was installed at two locations in Michigan’s Upper Peninsula on seven planting dates (three fall 2009, and four spring 2010); 25 seeds were planted 2 cm apart along 0.5 m rows at depths of: 0.6 cm, 1.3 cm, and 1.9 cm. Emergence and biomass yields were compared by planting date, and depths. A greenhouse seeding experiment was established using the same planting depths and parameters as the field study. The number of seedlings was tallied daily for 30 days. There was a significant difference in survivorship between the fall and spring planting dates, with the spring being more successful. Of the four spring planting dates, there was a significant difference between May and June in emergence and biomass yield. June planting dates had the most percent emergence and total survivorship. There is no significant difference between planting switchgrass at depths of 0.6 cm, 1.3 cm, and 1.9 cm. In conclusion, switchgrass showed no signs of a legacy effect of competition from year one, on biomass production. Overall, an antagonistic effect on switchgrass biomass yield during the establishment period has been observed as a result of increasing competing weed pressure. When planting switchgrass in Michigan’s Upper Peninsula, it should be done in the spring, within the first two weeks of June, at any depth ranging from 0.6 cm to 1.9 cm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this article was to explore the translocation of Cd-109, Co-57, Zn-65, Ni-63, and Cs-134 via xylem and phloem in the newly found hyperaccumulator Solanum nigrum L. Two experiments with the uptake via the roots and transport of Cd-109, Co-57, and Zn-65 labeled by roots, and the redistribution of Cd-109, Zn-65, Co-57, Ni-63, and Cs-134 using flap label in S. nigrum in a hydroponic culture with a standard nutrient solution were conducted. The results showed that Cd-109 added for 24 h to the nutrient medium of young plants was rapidly taken up, transferred to the shoot, and accumulated in the cotyledons and the oldest leaves but was not efficiently redistributed within the shoot afterward leading to a rather low content in the fruits. In contrast, Co-57 was more slowly taken up and released to the shoot, but afterward, this element was redistributed from older leaves to younger leaves and maturing fruits. Zn-65 was rapidly taken up and transferred to the shoot (mainly to the youngest leaves and not to the cotyledons). Afterward, this radionuclide was redistributed within the shoot to the youngest organs and finally accumulated in the maturing fruits. After flap labeling, all five heavy metals tested (Cd-109, Co-57, Zn-65, Ni-63, Cs-134) were exported from the labeled leaf and redistributed within the plant. The accumulation in the fruits was most pronounced for Ni-63 and Zn-65, while a relatively high percentage of Co-57 was finally found in the roots. Cs-134 was roughly in the middle of them. The transport of Cd-109 differed from that previously reported for wheat or lupin and might be important for the potential of S. nigrum to hyperaccumulate cadmium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expanding visitation to Polar regions combined with climate warming increases the potential for alien species introduction and establishment. We quantified vascular plant propagule pressure associated with different groups of travelers to the high-Arctic archipelago of Svalbard, and evaluated the potential of introduced seeds to germinate under the most favorable average Svalbard soil temperature (10°C). We sampled the footwear of 259 travelers arriving by air to Svalbard during the summer of 2008, recording 1,019 seeds: a mean of 3.9 (±0.8) seeds per traveler. Assuming the seed influx is representative for the whole year, we estimate a yearly seed load of around 270,000 by this vector alone. Seeds of 53 species were identified from 17 families, with Poaceae having both highest diversity and number of seeds. Eight of the families identified are among those most invasive worldwide, while the majority of the species identified were non-native to Svalbard. The number of seeds was highest on footwear that had been used in forested and alpine areas in the 3 months prior to traveling to Svalbard, and increased with the amount of soil affixed to footwear. In total, 26% of the collected seeds germinated under simulated Svalbard conditions. Our results demonstrate high propagule transport through aviation to highly visited cold-climate regions and isolated islands is occurring. Alien species establishment is expected to increase with climate change, particularly in high latitude regions, making the need for regional management considerations a priority.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An HPLC/GC–MS/MS technique (high-pressure liquid chromatography in combination with gas chromatography–tandem mass spectrometry) has been worked out to analyze indole-3-acetamide (IAM) with very high sensitivity, using isotopically labelled IAM as an internal standard. Using this technique, the occurrence of IAM in sterile-grown Arabidopsis thaliana (L.) Heynh. was demonstrated unequivocally. In comparison, plants grown under non-sterile conditions in soil in a greenhouse showed approximately 50% higher average levels of IAM, but the differences were not statistically significant. Thus, microbial contributions to the IAM extracted from the tissue are likely to be minor. Levels of IAM in sterile-grown seedlings were highest in imbibed seeds and then sharply declined during the first 24 h of germination and further during early seedling development to remain below 20–30 pmol g–1 fresh weight throughout the rosette stage. The decline in indole-3-aetic acid (IAA) levels during germination was paralleled by a similar decline in IAM levels. Recombinant nitrilase isoforms 1, 2 and 3, known to synthesize IAA from indole-3-acetonitrile, were shown to produce significant amounts of IAM in vitro as a second end product of the reaction besides IAA. NIT2 was earlier shown to be highly expressed in developing and in mature A. thaliana embryos, and NIT3 is the dominantly active gene in the hypocotyl and the cotyledons of young, germinating seedlings. Collectively, these data suggest that the elevated levels of IAM in seeds and germinating seedlings result from nitrilase action on indole-3-acetonitrile, a metabolite produced in the plants presumably from glucobrassicin turnover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La clasificación de las semillas de especies olerícolas se realiza principalmente por peso y tamaño, con criterios similares a los aplicados en cereales y leguminosas, en que se asocia positivamente estos atributos físicos con la calidad fisiológica. No obstante lo anterior, en diversas especies de hortalizas la información es escasa y contradictoria al respecto, lo que motiva la realización de la presente investigación. En semillas de tomate (Solanum lycopersicum L.) se determinó el efecto del peso y tamaño sobre la calidad fisiológica expresada como germinación y vigor. Además, se correlacionaron los resultados de las pruebas de evaluación de calidad fisiológica y se describieron variables del crecimiento y desarrollo. Se utilizaron lotes de diferentes variedades de semillas híbridas de cuatro temporadas, producidas en un clima templado cálido con lluvias invernales y estación seca prolongada (32º 54’ y 34° 21´ latitud Sur). Se midió peso y tamaño de semillas, además en dos temporadas se evaluaron las características internas de área y peso de embrión y área de endospermo. Se determinó la calidad de las semillas con la prueba de germinación y según fuera el año de estudio se midió vigor con las pruebas de envejecimiento acelerado, de plantas útiles al trasplante y de plántulas emergidas. Con análisis de imágenes y rayos X se extrajeron datos del tamaño externo e interno de las semillas y plántulas. Los lotes se compararon mediante análisis de varianza y las medias con la prueba de Tukey, la asociación entre dos variables se determinó con correlaciones de Pearson, las variables de peso y tamaño de la semilla y su relación con las pruebas de calidad, se analizaron mediante regresiones múltiples. Se utilizó un nivel de significación de 0,05 de probabilidad. Los resultados indicaron que el tamaño y no el peso de las semillas de tomate, diferenciaron calidad entre lotes en las diversas variedades. La prueba de germinación tuvo una baja sensibilidad para discriminar lotes, además de una escasa correlación con las características físicas de las semillas, cuando hubo asociación, la relación fue débil y negativa. La prueba de vigor de envejecimiento acelerado diferenció lotes y presentó escasa asociación con las características físicas de las semillas. El número de semillas germinadas en la prueba de envejecimiento acelerado se explicó por el efecto del tamaño de las semillas, mientras que las fracciones de descarte se asociaron con el peso de las mismas. La prueba de vigor de plantas útiles al trasplante no discriminó entre lotes. Tuvo una asociación débil con el peso y tamaño de las semillas. El modelo asociado a esta relación explicó con un alto coeficiente de determinación que el peso de la semilla influyó sobre la emergencia temprana, mientras que la relación fue menor y negativa con plantas de mayor desarrollo. La prueba de vigor de plántulas emergidas discriminó lotes de semillas con plántulas de 3 a 5 días después de siembra. Hubo escasa y débil asociación entre esta prueba y las características de peso y tamaño las semillas. El modelo de predicción de plántulas emergidas fue particular en cada temporada, cuando hubo un coeficiente de determinación alto influyó negativamente el peso o tamaño de la semilla. Entre las pruebas de calidad fisiológica evaluadas en semillas de tomate hubo escasas correlaciones significativas. Entre germinación y vigor las correlaciones significativas fueron débiles y sólo se encontraron en algunas temporadas de evaluación. Entre las pruebas de vigor no hubo asociación. En las pruebas de vigor de plantas útiles al trasplante y de plántulas emergidas, los cotiledones alcanzaron el mayor porcentaje de materia seca y se correlacionaron fuertemente con la materia seca total. En la prueba de plántulas emergidas la materia seca de las radículas diferenció parcialmente lotes de semillas al igual que la longitud total y de las radículas. La longitud de la radícula se correlacionó fuertemente con la longitud total de plántulas. ABSTRACT Seed selection for olericultural species is mainly carried out considering weight and size with similar criteria to those applied in cereals and legumes where size and physiological quality are favorably associated. However, information about several species is limited and contradictory regarding the above, leading to the present research. In tomato (Solanum lycopersicum L.) seeds, the effect of weight and size on the physiological quality expressed as germination and vigor was determined. In addition, results of quality evaluation tests were correlated and variables of growth and development were described. Batches of hybrid seeds from four seasons were used. These seeds were produced in a mild warm climate with winter rainfalls and long dry season (32º 54’ and 34° 21´South Latitude). Seed weight and size were determined, additionally internal characteristics such as embryo area and weight as well as endosperm area were evaluated in two seasons. The quality of seeds was established using the germination test and, depending on the year of the study, vigor was measured through accelerated aging tests for plants useful for transplanting and emerged seedlings. Using imaging analysis and X rays, data regarding external and internal size of seeds and seedlings were obtained. Batches were compared through ANOVA and means using Tukey’s test; the association between both variables was determined with Pearson correlations, whereas variables of seed weight and size and their relation to quality tests were analyzed through multiple regressions. A significance level of 0.05 probability was used. Results showed that the size (but not the weight) of tomatoes differentiates quality between batches from several seasons. The germination test was not sensitive enough to discriminate batches in addition to having a limited correlation with the characteristics of seeds, when they were associated, the relation was weak and unfavorable. Vigor test for accelerated aging made the difference between batches and presented low association with physical characteristics of the seeds. The number of germinated seeds in the accelerated aging test was explained by the effect of the seed size, whereas cull fractions were associated with their weight. The vigor test of plants useful for transplanting did not discriminate between batches. The association with seed weight and size was weak. The model associated to this relation explained, with a high coefficient determination, that the seed weight had influence on early emergence, whereas the relation was minor and unfavorable with more developed plants. Vigor test of emerged seedlings discriminated batches of seeds with seedlings of 3 to 5 days after sowing. There was a limited and weak association between this test and the characteristics of seed weight and size. The prediction model for seedlings emerged was particular in each season, when the determination coefficient was high, seed weight and size influenced negatively. Among the physiological quality tests evaluated in tomato seeds, significant correlations were negligible. Between germination and vigor, significant correlations were poor, being only found in some evaluation seasons. There was no association in the vigor tests. In vigor tests for plants useful for transplanting and emerged seedlings, cotyledons reached the highest percentage of dry matter and were strongly correlated with total dry matter. In the test of emerged seedlings, dry matter of radicles partially differentiated batches of seeds as well as total length and radicles. Radicle length was strongly correlated with total seedlings length.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major gibberellin (GA) controlling stem elongation in pea (Pisum sativum L.) is GA1, which is formed from GA20 by 3β-hydroxylation. This step, which limits GA1 biosynthesis in pea, is controlled by the Le locus, one of the original Mendelian loci. Mutations in this locus result in dwarfism. We have isolated cDNAs encoding a GA 3β-hydroxylase from lines of pea carrying the Le, le, le-3, and led alleles. The cDNA sequences from le and le-3 each contain a base substitution resulting in single amino acid changes relative to the sequence from Le. The cDNA sequence from led, a mutant derived from an le line, contains both the le “mutation” and a single-base deletion, which causes a shift in reading frame and presumably a null mutation. cDNAs from each line were expressed in Escherichia coli. The expression product for the clone from Le converted GA9 to GA4, and GA20 to GA1, with Km values of 1.5 μM and 13 μM, respectively. The amino acid substitution in the clone from le increased Km for GA9 100-fold and reduced conversion of GA20 to almost nil. Expression products from le and le-3 possessed similar levels of 3β-hydroxylase activity, and the expression product from led was inactive. Our results suggest that the 3β-hydroxylase cDNA is encoded by Le. Le transcript is expressed in roots, shoots, and cotyledons of germinating pea seedlings, in internodes and leaves of established seedlings, and in developing seeds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promoters of MEA (FIS1), FIS2, and FIE (FIS3), genes that repress seed development in the absence of pollination, were fused to β-glucuronidase (GUS) to study their activity pattern. The FIS2∷GUS product is found in the embryo sac, in each of the polar cell nuclei, and in the central cell nucleus. After pollination, the maternally derived FIS2∷GUS protein occurs in the nuclei of the cenocytic endosperm. Before cellularization of the endosperm, activity is terminated in the micropylar and central nuclei of the endosperm and subsequently in the nuclei of the chalazal cyst. MEA∷GUS has a pattern of activity similar to that of FIS2∷GUS, but FIE∷GUS protein is found in many tissues, including the prepollination embryo sac, and in embryo and endosperm postpollination. The similarity in mutant phenotypes; the activity of FIE, MEA, and FIS2 in the same cells in the embryo sac; and the fact that MEA and FIE proteins interact in a yeast two-hybrid system suggest that these proteins operate in the same system of control of seed development. Maternal and not paternal FIS2∷GUS, MEA∷GUS, and FIE∷GUS show activity in early endosperm, so these genes may be imprinted. When fis2, mea, and fie mutants are pollinated, seed development is arrested at the heart embryo stage. The seed arrest of mea and fis2 is avoided when they are fertilized by a low methylation parent. The wild-type alleles of MEA or FIS2 are not required. The parent-of-origin-determined differential activity of MEA, FIS2, and FIE is not dependent on DNA methylation, but methylation does control some gene(s) that have key roles in seed development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying the types and distributions of organic substrates that support microbial activities around plant roots is essential for a full understanding of plant–microbe interactions and rhizosphere ecology. We have constructed a strain of the soil bacterium Sinorhizobium meliloti containing a gfp gene fused to the melA promoter which is induced on exposure to galactose and galactosides. We used the fusion strain as a biosensor to determine that galactosides are released from the seeds of several different legume species during germination and are also released from roots of alfalfa seedlings growing on artificial medium. Galactoside presence in seed wash and sterile root washes was confirmed by HPLC. Experiments examining microbial growth on α-galactosides in seed wash suggested that α-galactoside utilization could play an important role in supporting growth of S. meliloti near germinating seeds of alfalfa. When inoculated into microcosms containing legumes or grasses, the biosensor allowed us to visualize the localized presence of galactosides on and around roots in unsterilized soil, as well as the grazing of fluorescent bacteria by protozoa. Galactosides were present in patches around zones of lateral root initiation and around roots hairs, but not around root tips. Such biosensors can reveal intriguing aspects of the environment and the physiology of the free-living soil S. meliloti before and during the establishment of nodulation, and they provide a nondestructive, spatially explicit method for examining rhizosphere soil chemical composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the occurrence of intracellular glasses in seeds and pollen has been established, physical properties such as rotational correlation times and viscosity have not been studied extensively. Using electron paramagnetic resonance spectroscopy, we examined changes in the molecular mobility of the hydrophilic nitroxide spin probe 3-carboxy-proxyl during melting of intracellular glasses in axes of pea (Pisum sativum L.) seeds and cattail (Typha latifolia L.) pollen. The rotational correlation time of the spin probe in intracellular glasses of both organisms was approximately 10−3 s. Using the distance between the outer extrema of the electron paramagnetic resonance spectrum (2Azz) as a measure of molecular mobility, we found a sharp increase in mobility at a definite temperature during heating. This temperature increased with decreasing water content of the samples. Differential scanning calorimetry data on these samples indicated that this sharp increase corresponded to melting of the glassy matrix. Molecular mobility was found to be inversely correlated with storage stability. With decreasing water content, the molecular mobility reached a minimum, and increased again at very low water content. Minimum mobility and maximum storage stability occurred at a similar water content. This correlation suggests that storage stability might be at least partially controlled by molecular mobility. At low temperatures, when storage longevity cannot be determined on a realistic time scale, 2Azz measurements can provide an estimate of the optimum storage conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durum wheat (Triticum turgidum L. var durum) cultivars exhibit lower Zn efficiency than comparable bread wheat (Triticum aestivum L.) cultivars. To understand the physiological mechanism(s) that confers Zn efficiency, this study used 65Zn to investigate ionic Zn2+ root uptake, binding, and translocation to shoots in seedlings of bread and durum wheat cultivars. Time-dependent Zn2+ accumulation during 90 min was greater in roots of the bread wheat cultivar. Zn2+ cell wall binding was not different in the two cultivars. In each cultivar, concentration-dependent Zn2+ influx was characterized by a smooth, saturating curve, suggesting a carrier-mediated uptake system. At very low solution Zn2+ activities, Zn2+ uptake rates were higher in the bread wheat cultivar. As a result, the Michaelis constant for Zn2+ uptake was lower in the bread wheat cultivar (2.3 μm) than in the durum wheat cultivar (3.9 μm). Low temperature decreased the rate of Zn2+ influx, suggesting that metabolism plays a role in Zn2+ uptake. Ca inhibited Zn2+ uptake equally in both cultivars. Translocation of Zn to shoots was greater in the bread wheat cultivar, reflecting the higher root uptake rates. The study suggests that lower root Zn2+ uptake rates may contribute to reduced Zn efficiency in durum wheat varieties under Zn-limiting conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stachyose synthase (STS) (EC 2.4.1.67) was purified to homogeneity from mature seeds of adzuki bean (Vigna angularis). Electrophoresis under denaturing conditions revealed a single polypeptide of 90 kD. Size-exclusion chromatography of the purified enzyme yielded two activity peaks with apparent molecular masses of 110 and 283 kD. By isoelectric focusing and chromatofocusing the protein was separated into several active forms with isoelectric point values between pH 4.7 and 5.0. Purified STS catalyzed the transfer of the galactosyl group from galactinol to raffinose and myo-inositol. Additionally, the enzyme catalyzed the galactinol-dependent synthesis of galactosylononitol from d-ononitol. The synthesis of a galactosylcyclitol by STS is a new oberservation. Mutual competitive inhibition was observed when the enzyme was incubated with both substrates (raffinose and ononitol) simultaneously. Galactosylononitol could also substitute for galactinol in the synthesis of stachyose from raffinose. Although galactosylononitol was the less-efficient donor, the Michaelis constant value for raffinose was lower in the presence of galactosylononitol (13.2 mm) compared with that obtained in the presence of galactinol (38.6 mm). Our results indicate that STS catalyzes the biosynthesis of galactosylononitol, but may also mediate a redistribution of galactosyl residues from galactosylononitol to stachyose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipase A2 (PLA2) was purified about 180,000 times compared with the starting soluble-protein extract from developing elm (Ulmus glabra) seeds. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified fraction showed a single protein band with a mobility that corresponded to 15 kD, from which activity could be recovered. When analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry, the enzyme had a deduced mass of 13,900 D. A 53-amino acid-long N-terminal sequence was determined and aligned with other sequences, giving 62% identity to the deduced amino acid sequence of some rice (Oryza sativa) expressed sequence tag clones. The purified enzyme had an alkaline pH optimum and required Ca2+ for activity. It was unusually stable with regard to heat, acidity, and organic solvents but was sensitive to disulfide bond-reducing agents. The enzyme is a true PLA2, neither hydrolyzing the sn-1 position of phosphatidylcholine nor having any activity toward lysophosphatidylcholine or diacylglycerol. The biochemical data and amino acid sequence alignments indicate that the enzyme is related to the well-characterized family of animal secretory PLA2s and, to our knowledge, is the first plant enzyme of this type to be described.