944 resultados para second order condition
Resumo:
Dual-phase-lagging (DPL) models constitute a family of non-Fourier models of heat conduction that allow for the presence of time lags in the heat flux and the temperature gradient. These lags may need to be considered when modeling microscale heat transfer, and thus DPL models have found application in the last years in a wide range of theoretical and technical heat transfer problems. Consequently, analytical solutions and methods for computing numerical approximations have been proposed for particular DPL models in different settings. In this work, a compact difference scheme for second order DPL models is developed, providing higher order precision than a previously proposed method. The scheme is shown to be unconditionally stable and convergent, and its accuracy is illustrated with numerical examples.
Resumo:
Starting from the idea that European elections cannot be considered as purely second order elections, the author gathers some proposals in order to encourage a more effective electoral process. According to the author, if political leaders adopt these reforms, it could transform gradually the European elections into genuine ‘first-order supranational elections’.
Resumo:
Starting from the idea that European elections cannot be considered as purely second order elections, the author gathers some proposals in order to encourage a more effective electoral process. According to the author, if political leaders adopt these reforms, it could transform gradually the European elections into genuine ‘first-order supranational elections’.
Resumo:
Mode of access: Internet.
Resumo:
"AEC Contract AT(04-3)-400."
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"CM-1019."
Resumo:
We establish maximum principles for second order difference equations and apply them to obtain uniqueness for solutions of some boundary value problems.
Resumo:
Motion is a powerful cue for figure-ground segregation, allowing the recognition of shapes even if the luminance and texture characteristics of the stimulus and background are matched. In order to investigate the neural processes underlying early stages of the cue-invariant processing of form, we compared the responses of neurons in the striate cortex (V1) of anaesthetized marmosets to two types of moving stimuli: bars defined by differences in luminance, and bars defined solely by the coherent motion of random patterns that matched the texture and temporal modulation of the background. A population of form-cue-invariant (FCI) neurons was identified, which demonstrated similar tuning to the length of contours defined by first- and second-order cues. FCI neurons were relatively common in the supragranular layers (where they corresponded to 28% of the recorded units), but were absent from layer 4. Most had complex receptive fields, which were significantly larger than those of other V1 neurons. The majority of FCI neurons demonstrated end-inhibition in response to long first- and second-order bars, and were strongly direction selective, Thus, even at the level of V1 there are cells whose variations in response level appear to be determined by the shape and motion of the entire second-order object, rather than by its parts (i.e. the individual textural components). These results are compatible with the existence of an output channel from V1 to the ventral stream of extrastriate areas, which already encodes the basic building blocks of the image in an invariant manner.
Resumo:
Let f : [0, 1] x R2 -> R be a function satisfying the Caxatheodory conditions and t(1 - t)e(t) epsilon L-1 (0, 1). Let a(i) epsilon R and xi(i) (0, 1) for i = 1,..., m - 2 where 0 < xi(1) < xi(2) < (...) < xi(m-2) < 1 - In this paper we study the existence of C[0, 1] solutions for the m-point boundary value problem [GRAPHICS] The proof of our main result is based on the Leray-Schauder continuation theorem.