861 resultados para scholarly text editing
Resumo:
Background Breastfeeding is recognised as the optimal method for feeding infants with health gains made by reducing infectious diseases in infancy; and chronic diseases, including obesity, in childhood, adolescence and adulthood. Despite this, exclusivity and duration in developed countries remains resistant to improvement. The objectives of this research were to test if an automated mobile phone text messaging intervention, delivering one text message a week, could increase “any” breastfeeding rates and improve breastfeeding self-efficacy and coping. Methods Women were eligible to participate if they were: over eighteen years; had an infant less than three months old; were currently breastfeeding; no diagnosed mental illness; and used a mobile phone . Women in the intervention group received MumBubConnect, a text messaging service with automated responses delivered once a week for 8 weeks. Women in the comparison group received their usual care and were sampled two years after the intervention group. Data collection included online surveys at two time points, week zero and week nine, to measure breastfeeding exclusivity and duration, coping, emotions, accountability and self-efficacy. A range of statistical analyses were used to test for differences between groups. Hierarchical regression was used to investigate change in breastfeeding outcome, between groups, adjusting for co-variates. Results The intervention group had 120 participants at commencement and 114 at completion, the comparison group had 114 participants at commencement and 86 at completion. MumBubConnect had a positive impact on the primary outcome of breastfeeding behaviors with women receiving the intervention more likely to continue exclusive breastfeeding; with a 6% decrease in exclusive breastfeeding in the intervention group, compared to a 14% decrease in the comparison group (p < 0.001). This remained significant after controlling for infant age, mother’s income, education and delivery type (p = 0.04). Women in the intervention group demonstrated active coping and were less likely to display emotions-focussed coping (p < .001). There was no discernible statistical effect on self-efficacy or accountability. Conclusions A fully automated text messaging services appears to improve exclusive breastfeeding duration. The service provides a well-accepted, personalised support service that empowers women to actively resolve breastfeeding issues. Trial registration Australian New Zealand Clinical Trials Registry: ACTRN12614001091695.
Resumo:
Description of a patient's injuries is recorded in narrative text form by hospital emergency departments. For statistical reporting, this text data needs to be mapped to pre-defined codes. Existing research in this field uses the Naïve Bayes probabilistic method to build classifiers for mapping. In this paper, we focus on providing guidance on the selection of a classification method. We build a number of classifiers belonging to different classification families such as decision tree, probabilistic, neural networks, and instance-based, ensemble-based and kernel-based linear classifiers. An extensive pre-processing is carried out to ensure the quality of data and, in hence, the quality classification outcome. The records with a null entry in injury description are removed. The misspelling correction process is carried out by finding and replacing the misspelt word with a soundlike word. Meaningful phrases have been identified and kept, instead of removing the part of phrase as a stop word. The abbreviations appearing in many forms of entry are manually identified and only one form of abbreviations is used. Clustering is utilised to discriminate between non-frequent and frequent terms. This process reduced the number of text features dramatically from about 28,000 to 5000. The medical narrative text injury dataset, under consideration, is composed of many short documents. The data can be characterized as high-dimensional and sparse, i.e., few features are irrelevant but features are correlated with one another. Therefore, Matrix factorization techniques such as Singular Value Decomposition (SVD) and Non Negative Matrix Factorization (NNMF) have been used to map the processed feature space to a lower-dimensional feature space. Classifiers with these reduced feature space have been built. In experiments, a set of tests are conducted to reflect which classification method is best for the medical text classification. The Non Negative Matrix Factorization with Support Vector Machine method can achieve 93% precision which is higher than all the tested traditional classifiers. We also found that TF/IDF weighting which works well for long text classification is inferior to binary weighting in short document classification. Another finding is that the Top-n terms should be removed in consultation with medical experts, as it affects the classification performance.
Resumo:
This paper evaluates the performance of different text recognition techniques for a mobile robot in an indoor (university campus) environment. We compared four different methods: our own approach using existing text detection methods (Minimally Stable Extremal Regions detector and Stroke Width Transform) combined with a convolutional neural network, two modes of the open source program Tesseract, and the experimental mobile app Google Goggles. The results show that a convolutional neural network combined with the Stroke Width Transform gives the best performance in correctly matched text on images with single characters whereas Google Goggles gives the best performance on images with multiple words. The dataset used for this work is released as well.
Resumo:
Marking Strange is a series of collaborative experimental creative works undertaken by Marissa Lindquist and Andrzej Pytel which explores the relationship between the body, new materiality and its application within different facets of design production. The ongoing experimental practice looks toward both organic and inorganic materials as a means of informing scholarly research, material development for commercial, installation and speculative design production and for academic studio programs. The work draws from theoretical positions such as Heidegger’s "nearness and revealing" (1927-1954), Simondon’s "transduction theory" (1989) and Burke's "sublime" (1757). Making Strange work has been exhibited within the Australian Pavilion Catalogue, FORMATIONS: New Practices in Australian Architecture, directed by Gerard Reinmuth and Anthony Burke with TOKO Concept Design, for the Venice International Architecture Biennale, 2012.
Resumo:
This project is a step forward in the study of text mining where enhanced text representation with semantic information plays a significant role. It develops effective methods of entity-oriented retrieval, semantic relation identification and text clustering utilizing semantically annotated data. These methods are based on enriched text representation generated by introducing semantic information extracted from Wikipedia into the input text data. The proposed methods are evaluated against several start-of-art benchmarking methods on real-life data-sets. In particular, this thesis improves the performance of entity-oriented retrieval, identifies different lexical forms for an entity relation and handles clustering documents with multiple feature spaces.
Resumo:
Background: A major challenge for assessing students’ conceptual understanding of STEM subjects is the capacity of assessment tools to reliably and robustly evaluate student thinking and reasoning. Multiple-choice tests are typically used to assess student learning and are designed to include distractors that can indicate students’ incomplete understanding of a topic or concept based on which distractor the student selects. However, these tests fail to provide the critical information uncovering the how and why of students’ reasoning for their multiple-choice selections. Open-ended or structured response questions are one method for capturing higher level thinking, but are often costly in terms of time and attention to properly assess student responses. Purpose: The goal of this study is to evaluate methods for automatically assessing open-ended responses, e.g. students’ written explanations and reasoning for multiple-choice selections. Design/Method: We incorporated an open response component for an online signals and systems multiple-choice test to capture written explanations of students’ selections. The effectiveness of an automated approach for identifying and assessing student conceptual understanding was evaluated by comparing results of lexical analysis software packages (Leximancer and NVivo) to expert human analysis of student responses. In order to understand and delineate the process for effectively analysing text provided by students, the researchers evaluated strengths and weakness for both the human and automated approaches. Results: Human and automated analyses revealed both correct and incorrect associations for certain conceptual areas. For some questions, that were not anticipated or included in the distractor selections, showing how multiple-choice questions alone fail to capture the comprehensive picture of student understanding. The comparison of textual analysis methods revealed the capability of automated lexical analysis software to assist in the identification of concepts and their relationships for large textual data sets. We also identified several challenges to using automated analysis as well as the manual and computer-assisted analysis. Conclusions: This study highlighted the usefulness incorporating and analysing students’ reasoning or explanations in understanding how students think about certain conceptual ideas. The ultimate value of automating the evaluation of written explanations is that it can be applied more frequently and at various stages of instruction to formatively evaluate conceptual understanding and engage students in reflective
Resumo:
Evidence is needed for the acceptability and user preferences of receiving skin cancer-related text messages. We prepared 27 questions to evaluate attitudes, satisfaction with program characteristics such as timing and spacing, and overall satisfaction with the Healthy Text program in young adults. Within this randomised controlled trial (age 18-42 years), 546 participants were assigned to one of three Healthy Text message groups; sun protection, skin self-examination, or attention-control. Over a 12-month period, 21 behaviour-specific text messages were sent to each group. Participants’ preferences were compared between the two interventions and control group at the 12-month follow-up telephone interview. In all three groups, participants reported the messages were easy to understand (98%), provided good suggestions or ideas (88%), and were encouraging (86%) and informative (85%) with little difference between the groups. The timing of the texts was received positively (92%); however, some suggestions for frequency or time of day the messages were received from 8% of participants. Participants in the two intervention groups found their messages more informative, and triggering behaviour change compared to control. Text messages about skin cancer prevention and early detection are novel and acceptable to induce behaviour change in young adults.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of large scale terms and data patterns. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, there has been often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences; yet, how to effectively use large scale patterns remains a hard problem in text mining. To make a breakthrough in this challenging issue, this paper presents an innovative model for relevance feature discovery. It discovers both positive and negative patterns in text documents as higher level features and deploys them over low-level features (terms). It also classifies terms into categories and updates term weights based on their specificity and their distributions in patterns. Substantial experiments using this model on RCV1, TREC topics and Reuters-21578 show that the proposed model significantly outperforms both the state-of-the-art term-based methods and the pattern based methods.
Resumo:
Reflective writing is an important learning task to help foster reflective practice, but even when assessed it is rarely analysed or critically reviewed due to its subjective and affective nature. We propose a process for capturing subjective and affective analytics based on the identification and recontextualisation of anomalous features within reflective text. We evaluate 2 human supervised trials of the process, and so demonstrate the potential for an automated Anomaly Recontextualisation process for Learning Analytics.
Resumo:
Background Definitive cisplatin-based is increasingly delivered as the treatment of choice for patients with head and neck cancer. Sensorineural hearing loss is a significant long term side effect of cisplatin-based chemoradiation and is associated with potential major quality of life issues for patients. Purpose The purpose of this manuscript was to review the mechanism behind sensorineural hearing loss in patients treated with cisplatin-based chemoradiation, including incidence, the contributions of radiotherapy and cisplatin to sensorineural hearing loss and the impact of the toxicity on patient quality of life. Methods Database searches were conducted through PubMed (National Centre for Biotechnology Information) and OvidSP Medline via the Queensland University of Technology Library website. General article searches were conducted through the online search engine Google Scholar. Articles were excluded if the full-text was unavailable, they were not in English or if they were published prior to 1990. Keywords included hearing loss, ototoxicity, cancer, quality of life, cisplatin and radiotherapy. Results/Discussion The total number of journal articles accessed was 290. Due to exclusion criteria, 129 articles were deemed appropriated for review. Findings indicated that sensorineural hearing loss is a significant, long term complication for patients treated with cisplatin-based chemoradiation. Current literature recognises the ototoxic effects of cisplatin and cranial irradiation as separate entities, however the impact of combined modality therapy on sensorineural hearing loss is seldom reported. Multiple risk factors for hearing loss are described, however there are contradictory opinions on incidence and severity and the exact radiation dose threshold responsible for inducing hearing loss in patients receiving combined modality therapy. Sensorineural hearing loss creates a subset of complexities for patients with head and neck cancer and that these patients face significant quality of life impairment. Conclusion The literature review identified that sensorineural hearing loss is a major quality of life issue for patients treated with cisplatin-based chemoradiation for head and neck cancer. Further investigation evaluating the contribution of cisplatin-based chemoradiation to sensorineural hearing loss and the subsequent effect on patient quality of life is warranted.
Resumo:
Objective To synthesise recent research on the use of machine learning approaches to mining textual injury surveillance data. Design Systematic review. Data sources The electronic databases which were searched included PubMed, Cinahl, Medline, Google Scholar, and Proquest. The bibliography of all relevant articles was examined and associated articles were identified using a snowballing technique. Selection criteria For inclusion, articles were required to meet the following criteria: (a) used a health-related database, (b) focused on injury-related cases, AND used machine learning approaches to analyse textual data. Methods The papers identified through the search were screened resulting in 16 papers selected for review. Articles were reviewed to describe the databases and methodology used, the strength and limitations of different techniques, and quality assurance approaches used. Due to heterogeneity between studies meta-analysis was not performed. Results Occupational injuries were the focus of half of the machine learning studies and the most common methods described were Bayesian probability or Bayesian network based methods to either predict injury categories or extract common injury scenarios. Models were evaluated through either comparison with gold standard data or content expert evaluation or statistical measures of quality. Machine learning was found to provide high precision and accuracy when predicting a small number of categories, was valuable for visualisation of injury patterns and prediction of future outcomes. However, difficulties related to generalizability, source data quality, complexity of models and integration of content and technical knowledge were discussed. Conclusions The use of narrative text for injury surveillance has grown in popularity, complexity and quality over recent years. With advances in data mining techniques, increased capacity for analysis of large databases, and involvement of computer scientists in the injury prevention field, along with more comprehensive use and description of quality assurance methods in text mining approaches, it is likely that we will see a continued growth and advancement in knowledge of text mining in the injury field.
Resumo:
Background The requirement for dual screening of titles and abstracts to select papers to examine in full text can create a huge workload, not least when the topic is complex and a broad search strategy is required, resulting in a large number of results. An automated system to reduce this burden, while still assuring high accuracy, has the potential to provide huge efficiency savings within the review process. Objectives To undertake a direct comparison of manual screening with a semi‐automated process (priority screening) using a machine classifier. The research is being carried out as part of the current update of a population‐level public health review. Methods Authors have hand selected studies for the review update, in duplicate, using the standard Cochrane Handbook methodology. A retrospective analysis, simulating a quasi‐‘active learning’ process (whereby a classifier is repeatedly trained based on ‘manually’ labelled data) will be completed, using different starting parameters. Tests will be carried out to see how far different training sets, and the size of the training set, affect the classification performance; i.e. what percentage of papers would need to be manually screened to locate 100% of those papers included as a result of the traditional manual method. Results From a search retrieval set of 9555 papers, authors excluded 9494 papers at title/abstract and 52 at full text, leaving 9 papers for inclusion in the review update. The ability of the machine classifier to reduce the percentage of papers that need to be manually screened to identify all the included studies, under different training conditions, will be reported. Conclusions The findings of this study will be presented along with an estimate of any efficiency gains for the author team if the screening process can be semi‐automated using text mining methodology, along with a discussion of the implications for text mining in screening papers within complex health reviews.
Resumo:
Narrative text is a useful way of identifying injury circumstances from the routine emergency department data collections. Automatically classifying narratives based on machine learning techniques is a promising technique, which can consequently reduce the tedious manual classification process. Existing works focus on using Naive Bayes which does not always offer the best performance. This paper proposes the Matrix Factorization approaches along with a learning enhancement process for this task. The results are compared with the performance of various other classification approaches. The impact on the classification results from the parameters setting during the classification of a medical text dataset is discussed. With the selection of right dimension k, Non Negative Matrix Factorization-model method achieves 10 CV accuracy of 0.93.