861 resultados para scenario clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Verbal fluency tests are used as a measure of executive functions and language, and can also be used to evaluate semantic memory. We analyzed the influence of education, gender and age on scores in a verbal fluency test using the animal category, and on number of categories, clustering and switching. We examined 257 healthy participants (152 females and 105 males) with a mean age of 49.42 years (SD = 15.75) and having a mean educational level of 5.58 (SD = 4.25) years. We asked them to name as many animals as they could. Analysis of variance was performed to determine the effect of demographic variables. No significant effect of gender was observed for any of the measures. However, age seemed to influence the number of category changes, as expected for a sensitive frontal measure, after being controlled for the effect of education. Educational level had a statistically significant effect on all measures, except for clustering. Subject performance (mean number of animals named) according to schooling was: illiterates, 12.1; 1 to 4 years, 12.3; 5 to 8 years, 14.0; 9 to 11 years, 16.7, and more than 11 years, 17.8. We observed a decrease in performance in these five educational groups over time (more items recalled during the first 15 s, followed by a progressive reduction until the fourth interval). We conclude that education had the greatest effect on the category fluency test in this Brazilian sample. Therefore, we must take care in evaluating performance in lower educational subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of psychiatric disorders and of chronic medical illnesses was studied in a population-based sample to determine whether these conditions co-occur in the same individual. A representative sample (N = 1464) of adults living in households was assessed by the Composite International Diagnostic Interview, version 1.1, as part of the São Paulo Epidemiological Catchment Area Study. The association of sociodemographic variables and psychological symptoms regarding medical illness multimorbidity (8 lifetime somatic conditions) and psychiatric multimorbidity (15 lifetime psychiatric disorders) was determined by negative binomial regression. A total of 1785 chronic medical conditions and 1163 psychiatric conditions were detected in the population concentrated in 34.1 and 20% of respondents, respectively. Subjects reporting more psychiatric disorders had more medical illnesses. Characteristics such as age range (35-59 years, risk ratio (RR) = 1.3, and more than 60 years, RR = 1.7), being separated (RR = 1.2), being a student (protective effect, RR = 0.7), being of low educational level (RR = 1.2) and being psychologically distressed (RR = 1.1) were determinants of medical conditions. Age (35-59 years, RR = 1.2, and more than 60 years, RR = 0.5), being retired (RR = 2.5), and being psychologically distressed (females, RR = 1.5, and males, RR = 1.4) were determinants of psychiatric disorders. In conclusion, psychological distress and some sociodemographic features such as age, marital status, occupational status, educational level, and gender are associated with psychiatric and medical multimorbidity. The distribution of both types of morbidity suggests the need of integrating mental health into general clinical settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power is still today an issue in wearable computing applications. The aim of the present paper is to raise awareness of the power consumption of wearable computing devices in specific scenarios to be able in the future to design energy efficient wireless sensors for context recognition in wearable computing applications. The approach is based on a hardware study. The objective of this paper is to analyze and compare the total power consumption of three representative wearable computing devices in realistic scenarios such as Display, Speaker, Camera and microphone, Transfer by Wi-Fi, Monitoring outdoor physical activity and Pedometer. A scenario based energy model is also developed. The Samsung Galaxy Nexus I9250 smartphone, the Vuzix M100 Smart Glasses and the SimValley Smartwatch AW-420.RX are the three devices representative of their form factors. The power consumption is measured using PowerTutor, an android energy profiler application with logging option and using unknown parameters so it is adjusted with the USB meter. The result shows that the screen size is the main parameter influencing the power consumption. The power consumption for an identical scenario varies depending on the wearable devices meaning that others components, parameters or processes might impact on the power consumption and further study is needed to explain these variations. This paper also shows that different inputs (touchscreen is more efficient than buttons controls) and outputs (speaker sensor is more efficient than display sensor) impact the energy consumption in different way. This paper gives recommendations to reduce the energy consumption in healthcare wearable computing application using the energy model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to explore how scenarios can be exploited in strategic assessment of the external business environment. One of the key challenges for managers worldwide is to adapt their businesses to the ever-changing business environment. As the companies’ external business environment is constantly presenting new opportunities and threats, it is extremely important that companies continuously monitor the possible changes happening around it. As the speed of change rises, assessing the future has become more and more vital. The study was conducted as an exploratory research and the research strategy was influenced by scenario planning and case study strategy. The study examined the European pet food sector from the future point of view. Qualitative study was chosen as research approach and empirical data was collected primarily by seven expert interviews. The secondary data about the sector was applied as complementary empirical data. In the theoretical part of the research it was discovered that nowadays, traditional analysis frameworks are ill-suited for strategic assessment of the external business environment. This is why a self-created combination framework for analysis was employed both as study’s theoretical framework and analysis technique. Furthermore, the framework formed the base for interview questions. Both in theoretical and the empirical part of the study it was found that today, in strategic assessment of the external business environment, besides setting focus on the current situation, it is important to concentrate also on the future. The traditional analysis frameworks offer a good starting point for collecting relevant data but they do not encourage conducting a deeper analysis. By adding characteristics from scenario planning to these more traditional tools, a new analysis framework was created, which ensured the more comprehensive analysis. By understanding the interconnections between discovered phenomena and changes, and by recognizing uncertainties, the user is helped to reflect the environment more profoundly. The contributions of the study are both theoretical and managerial. A new analysis framework strives to answer to the current needs for strategic assessment of external business environment and the framework was tested in the context of European pet food sector. When it comes to managerial contributions, the importance lies in understanding the future. Managers must take future into account and understand that future includes various possibilities which all must be reflected

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnitude of the cervical cancer problem, coupled with the potential for prevention with recent technological advances, made it imperative to step back and reassess strategic options for dealing with cervical cancer screening in Kenya. The purpose of this qualitative study was: 1) to explore the extent to which the Participatory Action Research (PAR) methodology and the Scenario Based Planning (SBP) method, with the application of analytics, could enable strategic, consequential, informed decision making, and 2) to determine how influential Kenyan decision makers could apply SBP with analytic tools and techniques to make strategic, consequential decisions regarding the implementation of a Cervical Self Sampling Program (CSSP) in both urban and rural settings. The theoretical paradigm for this study was action research; it was experiential, practical, and action oriented, and resulted in co-created knowledge that influenced study participants’ decision making. Action Africa Help International (AAHI) and Brock University collaborated with Local Decision Influencing Participants (LDIP’s) to develop innovative strategies on how to implement the CSSP. SBP tools, along with traditional approaches to data collection and analysis, were applied to collect, visualize and analyze predominately qualitative data. Outputs from the study included: a) a generic implementation scenario for a CSSP (along with scenarios unique to urban and rural settings), and b) 10 strategic directions and 22 supporting implementation strategies that address the variables of: 1) technical viability, 2) political support, 3) affordability, 4) logistical feasibility, 5) social acceptability, and 6) transformation/sustainability. In addition, study participants’ capacity to effectively engage in predictive/prescriptive strategic decision making was strengthened.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of most clustering algorithms is to find the optimal number of clusters (i.e. fewest number of clusters). However, analysis of molecular conformations of biological macromolecules obtained from computer simulations may benefit from a larger array of clusters. The Self-Organizing Map (SOM) clustering method has the advantage of generating large numbers of clusters, but often gives ambiguous results. In this work, SOMs have been shown to be reproducible when the same conformational dataset is independently clustered multiple times (~100), with the help of the Cramérs V-index (C_v). The ability of C_v to determine which SOMs are reproduced is generalizable across different SOM source codes. The conformational ensembles produced from MD (molecular dynamics) and REMD (replica exchange molecular dynamics) simulations of the penta peptide Met-enkephalin (MET) and the 34 amino acid protein human Parathyroid Hormone (hPTH) were used to evaluate SOM reproducibility. The training length for the SOM has a huge impact on the reproducibility. Analysis of MET conformational data definitively determined that toroidal SOMs cluster data better than bordered maps due to the fact that toroidal maps do not have an edge effect. For the source code from MATLAB, it was determined that the learning rate function should be LINEAR with an initial learning rate factor of 0.05 and the SOM should be trained by a sequential algorithm. The trained SOMs can be used as a supervised classification for another dataset. The toroidal 10×10 hexagonal SOMs produced from the MATLAB program for hPTH conformational data produced three sets of reproducible clusters (27%, 15%, and 13% of 100 independent runs) which find similar partitionings to those of smaller 6×6 SOMs. The χ^2 values produced as part of the C_v calculation were used to locate clusters with identical conformational memberships on independently trained SOMs, even those with different dimensions. The χ^2 values could relate the different SOM partitionings to each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naïvement perçu, le processus d’évolution est une succession d’événements de duplication et de mutations graduelles dans le génome qui mènent à des changements dans les fonctions et les interactions du protéome. La famille des hydrolases de guanosine triphosphate (GTPases) similaire à Ras constitue un bon modèle de travail afin de comprendre ce phénomène fondamental, car cette famille de protéines contient un nombre limité d’éléments qui diffèrent en fonctionnalité et en interactions. Globalement, nous désirons comprendre comment les mutations singulières au niveau des GTPases affectent la morphologie des cellules ainsi que leur degré d’impact sur les populations asynchrones. Mon travail de maîtrise vise à classifier de manière significative différents phénotypes de la levure Saccaromyces cerevisiae via l’analyse de plusieurs critères morphologiques de souches exprimant des GTPases mutées et natives. Notre approche à base de microscopie et d’analyses bioinformatique des images DIC (microscopie d’interférence différentielle de contraste) permet de distinguer les phénotypes propres aux cellules natives et aux mutants. L’emploi de cette méthode a permis une détection automatisée et une caractérisation des phénotypes mutants associés à la sur-expression de GTPases constitutivement actives. Les mutants de GTPases constitutivement actifs Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V ont été analysés avec succès. En effet, l’implémentation de différents algorithmes de partitionnement, permet d’analyser des données qui combinent les mesures morphologiques de population native et mutantes. Nos résultats démontrent que l’algorithme Fuzzy C-Means performe un partitionnement efficace des cellules natives ou mutantes, où les différents types de cellules sont classifiés en fonction de plusieurs facteurs de formes cellulaires obtenus à partir des images DIC. Cette analyse démontre que les mutations Cdc42 Q61L, Rho5 Q91H, Ras1 Q68L et Rsr1 G12V induisent respectivement des phénotypes amorphe, allongé, rond et large qui sont représentés par des vecteurs de facteurs de forme distincts. Ces distinctions sont observées avec différentes proportions (morphologie mutante / morphologie native) dans les populations de mutants. Le développement de nouvelles méthodes automatisées d’analyse morphologique des cellules natives et mutantes s’avère extrêmement utile pour l’étude de la famille des GTPases ainsi que des résidus spécifiques qui dictent leurs fonctions et réseau d’interaction. Nous pouvons maintenant envisager de produire des mutants de GTPases qui inversent leur fonction en ciblant des résidus divergents. La substitution fonctionnelle est ensuite détectée au niveau morphologique grâce à notre nouvelle stratégie quantitative. Ce type d’analyse peut également être transposé à d’autres familles de protéines et contribuer de manière significative au domaine de la biologie évolutive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indian economy is witnessing stellar growth over the last few years. There have been rapid developments in infrastructural and business front during the growth period.Internet adoption among Indians has been increasing over the last one decade.Indian banks have also risen to the occasion by offering new channels of delivery to their customers.Internet banking is one such new channel which has become available to Indian customers.Customer acceptance for internet banking has been good so far.In this study the researcher tried to conduct a qualitative and quantitative investigation of internet banking customer acceptance among Indians. The researcher tried to identify important factors that affect customer's behavioral intention for internet banking .The researcher also proposes a research model which has extended from Technology Acceptance Model for predicting internet banking acceptance.The findings of the study would be useful for Indian banks in planning and upgrading their internet banking service.Banks could increase internet banking adoption by making their customer awareness about the usefulness of the service.It is seen that from the study that the variable perceived usefulness has a positive influence on internet banking use,therefore internet banking acceptance would increase when customers find it more usefulness.Banks should plan their marketing campaigns taking into consideration this factor.Proper marketing communications which would increase consumer awareness would result in better acceptance of internet banking.The variable perceived ease of use had a positive influence on internet banking use.That means customers would increase internet banking usage when they find it easier to use.Banks should therefore try to develop their internet banking site and interface easier to use.Banks could also consider providing practical training sessions for customers at their branches on usage of internet banking interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theme of the thesis is centred around one important aspect of wireless sensor networks; the energy-efficiency.The limited energy source of the sensor nodes calls for design of energy-efficient routing protocols. The schemes for protocol design should try to minimize the number of communications among the nodes to save energy. Cluster based techniques were found energy-efficient. In this method clusters are formed and data from different nodes are collected under a cluster head belonging to each clusters and then forwarded it to the base station.Appropriate cluster head selection process and generation of desirable distribution of the clusters can reduce energy consumption of the network and prolong the network lifetime. In this work two such schemes were developed for static wireless sensor networks.In the first scheme, the energy wastage due to cluster rebuilding incorporating all the nodes were addressed. A tree based scheme is presented to alleviate this problem by rebuilding only sub clusters of the network. An analytical model of energy consumption of proposed scheme is developed and the scheme is compared with existing cluster based scheme. The simulation study proved the energy savings observed.The second scheme concentrated to build load-balanced energy efficient clusters to prolong the lifetime of the network. A voting based approach to utilise the neighbor node information in the cluster head selection process is proposed. The number of nodes joining a cluster is restricted to have equal sized optimum clusters. Multi-hop communication among the cluster heads is also introduced to reduce the energy consumption. The simulation study has shown that the scheme results in balanced clusters and the network achieves reduction in energy consumption.The main conclusion from the study was the routing scheme should pay attention on successful data delivery from node to base station in addition to the energy-efficiency. The cluster based protocols are extended from static scenario to mobile scenario by various authors. None of the proposals addresses cluster head election appropriately in view of mobility. An elegant scheme for electing cluster heads is presented to meet the challenge of handling cluster durability when all the nodes in the network are moving. The scheme has been simulated and compared with a similar approach.The proliferation of sensor networks enables users with large set of sensor information to utilise them in various applications. The sensor network programming is inherently difficult due to various reasons. There must be an elegant way to collect the data gathered by sensor networks with out worrying about the underlying structure of the network. The final work presented addresses a way to collect data from a sensor network and present it to the users in a flexible way.A service oriented architecture based application is built and data collection task is presented as a web service. This will enable composition of sensor data from different sensor networks to build interesting applications. The main objective of the thesis was to design energy-efficient routing schemes for both static as well as mobile sensor networks. A progressive approach was followed to achieve this goal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Overview of known spatial clustering algorithms The space of interest can be the two-dimensional abstraction of the surface of the earth or a man-made space like the layout of a VLSI design, a volume containing a model of the human brain, or another 3d-space representing the arrangement of chains of protein molecules. The data consists of geometric information and can be either discrete or continuous. The explicit location and extension of spatial objects define implicit relations of spatial neighborhood (such as topological, distance and direction relations) which are used by spatial data mining algorithms. Therefore, spatial data mining algorithms are required for spatial characterization and spatial trend analysis. Spatial data mining or knowledge discovery in spatial databases differs from regular data mining in analogous with the differences between non-spatial data and spatial data. The attributes of a spatial object stored in a database may be affected by the attributes of the spatial neighbors of that object. In addition, spatial location, and implicit information about the location of an object, may be exactly the information that can be extracted through spatial data mining

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, moving flock patterns are mined from spatio- temporal datasets by incorporating a clustering algorithm. A flock is defined as the set of data that move together for a certain continuous amount of time. Finding out moving flock patterns using clustering algorithms is a potential method to find out frequent patterns of movement in large trajectory datasets. In this approach, SPatial clusteRing algoRithm thrOugh sWarm intelligence (SPARROW) is the clustering algorithm used. The advantage of using SPARROW algorithm is that it can effectively discover clusters of widely varying sizes and shapes from large databases. Variations of the proposed method are addressed and also the experimental results show that the problem of scalability and duplicate pattern formation is addressed. This method also reduces the number of patterns produced

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spectral angle based feature extraction method, Spectral Clustering Independent Component Analysis (SC-ICA), is proposed in this work to improve the brain tissue classification from Magnetic Resonance Images (MRI). SC-ICA provides equal priority to global and local features; thereby it tries to resolve the inefficiency of conventional approaches in abnormal tissue extraction. First, input multispectral MRI is divided into different clusters by a spectral distance based clustering. Then, Independent Component Analysis (ICA) is applied on the clustered data, in conjunction with Support Vector Machines (SVM) for brain tissue analysis. Normal and abnormal datasets, consisting of real and synthetic T1-weighted, T2-weighted and proton density/fluid-attenuated inversion recovery images, were used to evaluate the performance of the new method. Comparative analysis with ICA based SVM and other conventional classifiers established the stability and efficiency of SC-ICA based classification, especially in reproduction of small abnormalities. Clinical abnormal case analysis demonstrated it through the highest Tanimoto Index/accuracy values, 0.75/98.8%, observed against ICA based SVM results, 0.17/96.1%, for reproduced lesions. Experimental results recommend the proposed method as a promising approach in clinical and pathological studies of brain diseases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper ‘Impact of Quality on Ethics and Social Responsibility in Marketing in Industries in Kerala in the present Indian scenario’ highlights the observations, based on a descriptive research carried out in five leading industries in Kerala, in the private and public sector. Ethics and social responsibilities, practiced in these industries, are reflected in the results of the survey conducted on specific queries like awareness of products/services provided by them, total understanding of the requirements of the customer, open discussion on technical matters, accountability of employees to the society and social needs, consumer ethics vis a vis business ethics etc. Team working goes a long way, in building relations, which in turn, results in a progressive and effective marketing strategy. This assumes paramount importance, considering the severe competition we are facing in the light of liberalization, privatization and globalization, which encompasses the globe. The prediction of India becoming a lead nation, along with USA, China and Japan, in this decade, can get fructified only if we follow a very high standards of ethics and social responsibility, in all domains including marketing. Organizations like TRW.Rane, Sundaram Fasteners, TVS Motors, in Chennai are a few among others in India, who have achieved the highest distinction in quality viz Deming Prize, and these demonstrate their commitment to quality, society and humanity at large. Cost effectiveness, without jeopardizing quality has become the need of the hour and MRTP has become history. This trait is being brought out through the survey and the results speak for themselves. Unethical practices like switch and bait, not only brings shame to the organization, and country but also results in the company getting wiped out from the market. Adherence to standards like ISO 14000 helps to maintain the minimum level of social responsibility and environmental friendliness. Like quality audit, safety audit etc, social audit is being insisted in all progressive countries to ensure that the organization comply with the minimum statutory requirements. The paper also touches upon Corporate Social Responsibility practiced in the industries and this becomes crystal clear through their commitment to improve the community. Green Marketing lays a lot of importance on the three Rs of environmentalism viz Reduce, Reuse and Recycle. The objective of any business is to achieve optimal profit and this is possible only by reducing the cost as well as waste. In this context, management tools like brainstorming, suggestion schemes, benchmarking etc becomes helpful. These characteristics are brought out through the analysis of survey results. The conclusions drawn throw a lot of information on the desirable practices with respect to Ethics and Social Responsibility in Marketing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge discovery in databases is the non-trivial process of identifying valid, novel potentially useful and ultimately understandable patterns from data. The term Data mining refers to the process which does the exploratory analysis on the data and builds some model on the data. To infer patterns from data, data mining involves different approaches like association rule mining, classification techniques or clustering techniques. Among the many data mining techniques, clustering plays a major role, since it helps to group the related data for assessing properties and drawing conclusions. Most of the clustering algorithms act on a dataset with uniform format, since the similarity or dissimilarity between the data points is a significant factor in finding out the clusters. If a dataset consists of mixed attributes, i.e. a combination of numerical and categorical variables, a preferred approach is to convert different formats into a uniform format. The research study explores the various techniques to convert the mixed data sets to a numerical equivalent, so as to make it equipped for applying the statistical and similar algorithms. The results of clustering mixed category data after conversion to numeric data type have been demonstrated using a crime data set. The thesis also proposes an extension to the well known algorithm for handling mixed data types, to deal with data sets having only categorical data. The proposed conversion has been validated on a data set corresponding to breast cancer. Moreover, another issue with the clustering process is the visualization of output. Different geometric techniques like scatter plot, or projection plots are available, but none of the techniques display the result projecting the whole database but rather demonstrate attribute-pair wise analysis