636 resultados para sandstone
Resumo:
The research on mechanical effects of water-rock and soil interaction on deformation and failure of rocks and soils involves three aspects of mechanics, physics and chemistry. It is the cross between geochemistry and rock mechanics and soil mechanics. To sum up, the mechanical effects of water-rock and soil interaction is related to many complex processes. Research in this respect has been being an important forward field and has broad prospects. In connection with the mechanism of the effects of the chemical action of water-rock on deformation and failure of rocks and soils, the research significance, the present state, the developments in this research domain are summarized. Author prospects the future of this research. The research of the subject should be possessed of important position in studying engineering geology and will lead directly to a new understand on geological hazard and control research. In order to investigation the macroscopic mechanics effects of chemical kinetics of water-rock interaction on the deformation and failure, calcic rock, red sandstone and grey granite reacting chemically with different aqueous solution at atmospheric temperature and atmospheric pressure are uniaxially compressed. The quantitative results concerning the changes of uniaxially compressive strength and elastic modulus under different conditions are obtained. It is found that the mechanical effects of water on rock is closely related to the chemical action of water-rock or the chemical damage in rock, and the intensity of chemical damage is direct ratio to the intensity of chemical action in water-rock system. It is also found that the hydrochemical action on rock is time-dependent through the test. The mechanism of permeation and hydrochemical action resulting in failure of loaded rock mass or propagation of fractures in rocks would be a key question in rock fracture mechanics. In this paper, the fracture mechanical effects of chemical action of water-rock and their time- and chemical environment-dependent behavior in grey granite, green granite, grey sandstone and red sandstone are analyzed by testing K_(IC) and COD of rock under different conditions. It is found that: ①the fracture mechanical effect of chemical action of water-rock is outstanding and time-dependent, and high differences exist in the influence of different aqueous solution, different rocks, different immersion ways and different velocity of cycle flow on the fracture mechanical effects in rock. ②the mechanical effects of water-rock interaction on propagation of fractures is consistent with the mechanical effects on the peak strength of rock. ③the intensity of the mechanical fracture effects increases as the intensity of chemical action of water-rock increases. ④iron and calcium ion bearing mineral or cement in rock are some key ion or chemical composition, and especially iron ion-bearing mineral resulting in chemical action of water-rock to be provided with both positive and negative mechanical effects on rock. Through the above two tests, we suggest that primary factors influencing chemical damage in rock consist of the chemical property of rock and aqueous solution, the structure or homogeneity of rocks, the flow velocity of aqueous solution passing through rock, and cause of formation or evolution of rock. The paper explores the mechanism on the mechanical effects of water-rock interaction on rock by using the theory of chemistry and rock fracture mechanics with chemical damage proposed by author, the modeling method and the energy point of view. In this paper, the concept of absorbed suction between soil grains caused by capillary response is given and expounded, and the relation and basic distinction among this absorbed suction, surface tension and capillary pressure of the soil are analyzed and established. The law of absorbed suction change and the primary factors affecting it are approached. We hold that the structure suction are changeable along with the change of the saturation state in unsaturated soils. In view of this, the concept of intrinsic structure suction and variable structure suction are given and expounded, and this paper points out: What we should study is variable structure suction when studying the effective stress. By IIIy κHH's theory of structure strength of soils, the computer method for variable structure suction is analyzed, the measure method for variable structure suction is discussed, and it reach the conclusions: ①Besides saturation state, variable structure suction is affected by grain composition and packing patter of grains. ②The internal relations are present between structure parameter N in computing structure suction and structure parameter D in computing absorbed suction. We think that some problems exit in available principle of effective stress and shear strength theory for unsaturated soil. Based on the variable structure suction and absorbed suction, the classification of saturation in soil and a principle of narrow sense effective stress are proposed for unsaturated soils. Based on generalized suction, the generalized effective stress formula and a principle of generalized effective stress are proposed for unsaturated soils. The experience parameter χ in Bishop's effective stress formula is defined, and the principal factors influencing effective stress or χ. The primary factor affecting the effective stress in unsaturated soils, and the principle classifying unsaturated soils and its mechanics methods analyzing unsaturated soils are discussed, and this paper points out: The theory on studying unsaturated soil mechanics should adopt the micromechanics method, then raise it to macromechanics and to applying. Researching the mechanical effects of chemical action of water-soil on soil is of great importance to geoenvironmental hazard control. The texture of soil and the fabric of soil mass are set forth. The tests on physical and mechanical property are performed to investigate the mechanism of the positive and negative mechanical effects of different chemical property of aqueous solution. The test results make clear that the plastic limit, liquid limit and plasticity index are changed, and there exists both positive and negative effects on specimens in this test. Based on analyzing the mechanism of the mechanical effects of water-soil interaction on soil, author thinks that hydrochemical actions being provided with mechanical effects on soil comprise three kinds of dissolution, sedimentation or crystallization. The significance of these tests lie in which it is recognized for us that we may improve, adjust and control the quality of soils, and may achieve the goal geological hazard control and prevention.The present and the significance of the research on environmental effects of water-rock and soil interaction. Various living example on geoenvironmental hazard in this field are enumerated. Following above thinking, we have approached such ideals that: ①changing the intensity and distribution of source and sink in groundwater flow system can be used to control the water-rock and soil interaction. ②the chemical action of water-rock and soil can be used to ameliorate the physical and mechanical property of rocks and soils. Lastly, the research thinking and the research methods on mechanical effects and environmental effects of water-rock and soil interaction are put forward and detailed.
Resumo:
Rock heterogeneity plays an important role in rock fracturing processes. However, because fracturing is a dynamic process and it is very difficult to quantify materials' heterogeneity, most of the theories dealing with local failure were based on the homogeneity assumption, very few involving stress distribution heterogeneity and successive local failure due to rock heterogeneity. Therefore, based on various references, the author studied the laws and mechanism of influences of heterogeneity on rock fracturing processes, under the frame of the project "Study on Associate Mechanism between Rock Mass Fracture and Strength Failure", funded by Nation Natural Science Fund. the research consists of such aspects as size effect correction to rock fracture parameters, SEM (Scanning Electron Microscope) real-time observation on rock samples under different loads, micro-hardness testing, and numerical simulating based on microstructure. There are some important research results as followed: 1. Unifying formula for nonlinear and non-singularity correction, simplifying the complex process of correcting size effect on rock fracture toughness. 2. Using the methods of micro-hardness testing mineral grain and random jointing micrograph digitizing mineral slice, preliminarily solving the problems of numerical simulating and quantitatively describing the heterogeneous strength and its distribution rules, which has certain innovation and better practicability. 3. Based on SEM real-time observation, studying the micro-process of fracturing in marble, sandstone, granite, and mushroom stone samples with premanufactured cracks under tension, pure-shear and compression-shear conditions. Strength Failure was observed: there was some kind failure occurred before Fracture Failure in marble and sandstone samples with double cracks under pure-shearing. It is believed that the reason of strength failure developing is that stress concentrations is some locations are larger than that near the end of pre-manufactured cracks. 4. Based on the idea that rock macro-constitute is composed of complex microstructure, the promising method used to handle heterogeneity considers not only the heterogeneity of the rock medium, but also the heterogeneity of the rock structure. 5. Putting forward two types of rock strength failure: medium strength failure induced by heterogeneity of rock medium and structure strength failure induced by heterogeneity rock structure. 6. By evaluating potential fracture cell with proper failure priority, the numerical simulating method solved the problem of simulating the coextensive strength failure and fracture failure with convention strength failure rules. The result of numerical analysis shows that the influence of heterogeneity on rock fracturing processes is evident. The sinuosity of the rock fracture-propagation path, and the irregular fluctuation of loading displacement curve, is mainly controlled by the heterogeneity of rock medium.
Resumo:
Jiyang & Changwei depressions are two neighboring depressions in Bahai Bay Basin, the famous oil rich basin in East China. The exploration activities in the past 40 years has proved that, within the basins, there exists not only plentiful sandstone hydrocarbon reservoirs (conventional), but also abundant special reservoirs as igneous rock, mudstone and conglomerate ones which have been knowing as the unconventional in the past, and with the prospecting activity is getting more and more detailed, the unconventional reservoirs are also getting more and more important for further resources, among which, the igneous lithological reservoir be of significance as a new research and exploration area. The purpose of this paper is, with the historical researches and data as base, the System Theory, Practice Theory and Modern Comprehensive Petroleum Geology Theory as guide, the theoretical and practice break through as the goal, and the existing problems in the past as the break through direction, to explore and establish a valid reservoir formation and distribution models for igneous strata in the profile of the eastern faulted basins. After investigating the distribution of the igneous rocks and review the history of the igneous rocks reservoirs in basins, the author focused on the following issues and correspondingly the following progresses have been made: 1.Come to a new basin evolution and structure model named "Combined-Basin-bodies Model" for Jiyang even Eastern faulted basins based on the study on the origin and evolution of Jiyang & Changwei basins, depending on this model, every faulted basin in the Bo-hai Bay Basin is consisted of three Basin-Bodies including the Lower (Mesozoic), Middle (Early Tertiary) and the Upper (Late Tertiary) Bodies, each evolved in different geo-stress setting and with different basin trend, shape and igneous-sedimentary buildings system, and from this one to next one, the basin experienced a kind of process named "shape changing" and "Style changing". 2. Supposed a serious of new realizations as follows (1) There were "multi-level magma sources" including Upper mantel and the Lower, Middle and even the Upper Shell magma Chambers in the historical Magma Processes in the basins; (2) There were "multi-magma accessing or pass" from the first level (Mantel faults) to the second, third and fourth levels (that is the different levels of fault in the basin sediment strata) worked in the geo-historical and magma processes; (3) Three tectonic magma cycles and more periods have been recognized those are matched with the "Basin -body-Model" and (4)The geo-historical magma processes were non-homogeneous in time and space scale and so the magma rocks distributed in "zones" or "belts". 3. The study of magma process's effect on basin petroleum conditions have been made and the following new conclusions were reached: (1) the eruptive rocks were tend to be matched with the "caped source rock", and the magma process were favorable to the maturing of the source rocks. (2) The magma process were fruitful to the accumulation of the non-hydrocarbon reservoirs however a over magma process may damage the grade of resource rock; (3) Eruptive activity provided a fruitful environment for the formation of such new reservoir rocks as "co-eruptive turbidity sandstones" and "thermal water carbonate rocks" and the intrusive process can lead to the origin of "metamorphism rock reservoir"; (4) even if the intrusive process may cause the cap rock broken, the late Tertiary intrusive rocks may indeed provide the lateral seal and act as the cap rock locally even regionally. All above progresses are valuable for reconstructing the magma-sedimentary process history and enriching the theory system of modem petroleum geology. 4. A systematic classification system has been provided and the dominating factors for the origin and distribution of igneous rock reservoirs have been worked out based on the systematic case studies, which are as follows: (1) The classification is given based on multi-factors as the origin type, litho-phase, type of reservoir pore, reservoir ability etc., (2) Each type of reservoir was characterized in a detailed way; (3) There are 7 factors dominated the intrusive reservoir's characteristics including depth of intrusion, litho-facies of surrounding rocks, thickness of intrusive rock, intrusive facies, frequency and size of the working faults, shape and tectonic deformation of rock, erosion strength of the rock and the time of the intrusion ect., in the contrast, 4 factors are for eruptive rocks as volcanic facies, frequency and size of the working faults, strength of erosion and the thermal water processing. 5. Several new concept including "reservoir litho-facies", "composite-volcanic facies" and "reservoir system" ect. Were suggested, based on which the following models were established: (1) A seven reservoir belts model for a intrusive unit profile and further more, (2) a three layers cubic model consisted of three layer as "metamorphic roe layer", "marginal layer" and "the core"; (3) A five zones vertical reservoir sequence model consisted of five litho-facies named A, B, C, D and E for a original lava unit and furthermore three models respectively for a erosion, subsidence and faulted lava unit; (4) A composite volcanic face model for a lava cone or a composite cone that is consisted of three facies as "crater and nearby face", "middle slope" and "far slope", among which, the middle slope face is the most potential reservoir area and producible for oil & gas. 6. The concept of "igneous reservoir" was redefined as the igneous, and then a new concept of "igneous reservoir system" was supposed which means the reservoir system consisted of igneous and associated non-igneous reservoirs, with non-hydrocarbon reservoir included. 7. The origin and distribution of igneous reservoir system were probed and generalized for the exploration applications, and origin models of the main reservoir sub-systems have been established including those of igneous, related non-igneous and non-hydrocarbon. For intrusive rocks, two reservoir formation models have been suggested, one is called "Original or Primary Model", and the another one is "Secondary Model"; Similarly, the eruptive rock reservoirs were divided in three types including "Highly Produced", "Moderately Produced" and "Lowly Produced" and accordingly their formation models were given off; the related non-igneous reservoir system was considered combination of eight reservoirs, among which some ones like the Above Anticline Trap are highly produced; Also, the non-hydrocarbon. Trap system including five kinds of traps was discussed. 8. The concept models for four reservoir systems were suggested, which include the intrusive system consisted of 7 kinds of traps, the land eruptive system with 6 traps, the under water eruptive system including 6 kinds of traps and the non-hydrocarbon system combined by 5 kinds of traps. In this part, the techniques for exploration of igneous reservoir system were also generalized and probed, and based on which and the geological progresses of this paper, the potential resources and distributions of every reservoir system was evaluated and about 186 millions of reserves and eight most potential non-hydrocarbon areas were predicted and outlined. The author believe that the igneous reservoir system is a very important exploration area and its study is only in its early stage, the framework of this paper should be filled with more detailed studies, and only along way, the exploration of igneous reservoir system can go into it's really effective stage.
Resumo:
Based on achievements of thirty years of hydrocarbon exploration, this paper uses the modern theories and methods of sedimentology and oil accumulation to study the origin and distribution features of four sandbodies of Gaoqing, Fanjia, Zhenglizhuang and Jinjia from the third member to the lower second member of Shahejie Formation in detail. Various geophysical methods are also used to explain and to predict the spatial distribution of sandbodies, which further shows mechanism and the model of oil accumulation and illuminates the disciplinarians of oil enrichment and its controlling factors in the study area. The most favourable oil pools predicted by this paper have significant economic and social benefits, which has been confirmed by the exploration. The main conclusions and knowledge includes: (1) Resolving the problems, which remain unresolvable for a long time in the western area of Boxing depression, about the original environment and the spatial distribution of sandbodies of Gaoqing, Fanjia, Zhenglizhuang and Jinjia, and illuminating their relationships. It is suggested that two deltas or delta-related sandbody sediments, which include the delta sandbodies of Jinjia and Gaoqing and their frontal turbidite fan sandbody, are developed in the second and third members of Shahejie Formation. The sandbodies of Fanjia, Gaoqing and Zhenglizhuang are components of Gaoqing delta and belong to the sediments of various periods in different part of the delta. Whereas, the sandbody of Jinjia belong to the Jinjia delta or fan-delta created by the uplift of the Western Shandong and in some areas shows the features of juxtaposition, superimposed deposition and fingeration with the sandbodies of Gaoqing and Zhenglizhuang. (2)Proposing that the sandbodies of different origins in the deltas of Gaoqing and Jinjia have obvious different reservoir qualities, among which the delta frontal bedded sandbodies in the second member of Shahejie Formation in Zhenglizhuang are the best ones and the turbidite sandbody of Fanjia is relatively worse. This shows the direction of further reservoir prediction. (3) According to modern petroleum system theory and continental pool-formation theory, the author divided the western area of Boxing depression into the Jinjia—Zhenglizhuang—Fanjia nose structure belt pool-formation system and the Gaoqing fracture belt pool-formation system. The study area is predominantly located in the former belt and subdivided into pool-formation sub-systems of Zhenglizhuang-Fanjia and Jinjia, which have the source rock of mudstone and oil shale from the upper forth member and the third member of Shahejie Formation in Boxing depression. The hydrocarbon migration and accumulation are controlled by Jinjia-Zhenglizhuang-fanjia nose structure and Gaoqing fracture. (4)Proposing that compared with the best developed sandbodies and traps in the west area of Boxing, the source from the Boxing depression is not sufficient, which is the fundamental reason that the hydrocarbon resources in mid-west area is less than in the east of Boxing. (5) Under the direction of the new theory (fluid compartments theory) and new method of modern pool-formation mechanism, two kinds of pool-formation model are established in study, i.e. inner-compartment model and outer-compartment model. The former has abnormal pressure and is the antigenic source seal pool-forming mechanism, whereas the latter has normal pressure and is of the allochthonous source opening pool-formation mechanism. (6)The study shows that the four sandbodies of Gaoqing, Fanjia, Jinjia and Zhenglizhuang sand are all very benefit for pool-formation, among which the Fanjia sandbody is the best favourable one and is likely to form lithological reservoir and fault-lithological reservoir. But the main step of exploration in Gaoqing, Zhenglizhuang sandbodies should be finding out the fault block, reversed roof and stratum-lithological oil reservoir. (7)Established a set of guidelines and techniques for the research and exploration in the large scale of sandbodies. Proposing that the various traps related to reversed fault and basin-ward fault should be found in step slopes and gentle slopes respectively, and the lithological oil reservoir should mainly be found in the sandstone updip pinch out. It is also suggested that Fanjia sandbody is most favourable to form the lithological and fault-lithological and the Gaoqing, Zhenglizhuang and Jinjia sandbodies have the potential of forming fault block, reversed roof and stratum-lithological oil reservoir. (8) Interpretation and prediction the spatial distribution of main sandbodies based on various geophysical methods suggestion that Fanxi, Gao28 south and Gao27 east have better exploration potential.
Resumo:
Based on the study of fluvial sandstone reservoir in upper of Guantao group in Gudao and Gudong oilfields, this paper first introduces A.D.Miall's(1996a) architectural-element analysis method that was summarized from ground outcrop scale into the reservoir formation research of the study area, more subtly divides sedimentary microfacies and establishes sedimentary model of research area.on this base, this paper summarizes the laws of residual oil distribution of fluvial formation and the control effect of sedimentary microfacies to residual oil distribution, and reveals residual oil formation mechanism. These results have been applied to residual oil production, and the economic effect is good. This paper will be useful for residual oil research and production and enhancement of oil recovery in similar reservoir. The major conclusions of this paper are as follows. 1. Using the architectural-element analysis method to the core data, a interfacial division scheme of the first to the dixth scale is established for the studied fluvial formation. 2.Seven architectural-elements are divided in upper of Guantao group of study area. The sandstone group 5~1+2 of Neogene upper Gutao group belongs to high sinuous fine grain meandering river, and the sandstone group 6 is sandy braided river. 3. Inter layer, the residual oil saturation of "non-main layer" is higher than "main layer", but the residual recoverable reserve of former is larger. Therefore, "main layer" is the main body of residual oil distribution. The upper and middle part of inner layer has lower permeability and strong seeping resistance. Addition to gravity effect in process of driving, its driving efficiency is low; residual oil saturation is high. Because of controlling of inside non-permeable interlayer or sedimentary construction, the residual oil saturation of non-driving or lower driving efficiency position also is high. On plane, the position of high residual oil saturation mostly is at element LV, CS, CH (FF), FF etc, Which has lower porosity and permeability, as well as lens sand-body and sand-body edge that is not controlled by well-net, non-perfect area of injection and production, lower press difference resort area of inter-well diffiuent-line and shelter from fault, local high position of small structure. 4.Microscopic residual oil mainly includes the non-moved oil in the structure of fine pore network, oil in fine pore and path, oil segment in pore and path vertical to flow direction, oil spot or oil film in big pore, residual oil in non-connective pore. 5.The most essential and internal controlling factor of fluvial formation residual oil distribution is sedimentary microfacies. Status of injection and production is the exterior controlling factor of residual oil distribution. 6. The controlling effect of formation sedimentary microfacies to residual oil distribution indicates inter-layer vertical sedimentary facies change in scale of injection and production layer-series, planar sedimentary face change and inner-layer vertical sedimentary rhythm and interbed in single layer to residual oil distribution. 7. It is difficult to clear up the inter-layer difference in scale of injection and production layer-series. The using status of minor layer is not good and its residual oil saturation is high relatively. It is obvious that inter-layer vertical sedimentary facies changes control inter-layer residual oil distribution at the same or similar conditions of injection and production. For fluvial formation, this vertical sedimentary facies change mainly is positive
gyration. Namely, from down to top, channel sediment (element CHL, LA) changes into over-bank sediment (element LV, CR, CS).
8. In water-injection developing process of transverse connecting fluvial sandstone oil formation, injection water always comes into channel nearby, and breaks through along
channel and orientation of high pressure gradient, does not expand into side of channel until pressure gradient of channel orientation changes into low. It brings about that water-driving status of over-bank sedimentary element formation (LV, CR, CS) is not good, residual oil saturation is high. In non-connective abandoned channel element (CH
Resumo:
The Dongying depression, located in the northern part of the jiyang Sag in the Buohaiwan Basin, comprises one of the major oil-producing bases of the Shengli oil-field. The prediction and exploration of subtle or litho1ogical oil traps in the oil-field has become the major confronted target. This is also one of the frontier study areas in the highly-explored oil-bearing basins in East China and abroad. Based on the integrated analysis of the geological, seismic and logging data and the theories of sequence stratigraphy, tectono-stratigraphy and petroleum system, the paper has attempted to document the characteristics of the sequence stratigraphic and structural frameworks of the low Tertiary, the syndepositional faults and their control on deposition, and then to investigate the forming conditions and distribution of the tithological oil traps in the depression. The study has set up a set of analysis methods, which can be used to effectively analysis the sequence stratigraphy of inland basins and predict the distribution of sandstone reservoirs in the basins. The major achievements of the study are as follows: 1. The low Tertiary can be divided into 4 second-order sequences and 13 third-order sequences, and the systems tracts in the third-order sequences have been also identified based on the examination and correction of well logging data and seismic profiles. At the same time, the parasequences and their stacking pattern in the deltaic systems of the third member of the Shahejie Formation have been recognized in the key study area. It has been documented that the genetic relation of different order sequences to tectonic, climatic and sediment supply changes. The study suggested that the formation of the second-order sequences was related to multiple rifting, while the activity of the syndepositional faults controlled the stacking pattern of parasequences of the axial deltaic system in the depression. 2. A number of depositional facies have been recognized in the low Tertiary on the basis of seismic facies and well logging analysis. They include alluvial fan, fan delta or braided delta, axial delta, lowstand fan, lacustrine and gravity flow deposits. The lacustrine lowstand fan deposits are firstly recognized in the depression, and their facies architecture and distribution have been investigated. The study has shown that the lowstand fan deposits are the important sandstone reservoirs as lithological oil traps in the depression. 3. The mapping of depositional systems within sequences has revealed the time and special distrbution of depositional systems developed in the basin. It is pointed out that major elastic systems comprise the northern marginal depositional systems consisting of alluvial fan, fan delta and offshore lowstand fan deposits, the southern gentle slope elastic deposits composed of shallow lacustrine, braided delta and lowstand fan deposits and the axial deltaic systems including those from eastern and western ends of the depression. 4. The genetic relationship between the syndepositional faults and the distribution of sandstones has been studied in the paper, upper on the analysis of structural framework and syndepositional fault systems in the depression. The concept of structural slope-break has been firstly introduced into the study and the role of syndepositional faults controlling the development of sequence architecture and distribution of sandstones along the hinged and faulted margins have been widely investigated. It is suggested that structural styles of the structural slope-break controlled the distribution of lowstand fan deposits and formed a favorable zone for the formation of lithological or structure-lithological oil traps in the basin. 5. The paper has made a deep investigation into the forming condition and processes of the lithological traps in the depression, based the analysis of composition of reservoir, seal and resource rocks. It is pointed out that there were two major oil pool-forming periods, namely the end of the Dongying and Guangtao periods, and the later one is the most important. 6. The study has finally predicted a number of favorable targets for exploration of lithologieal traps in the depression. Most of them have been drilled and made great succeed with new discovered thousands tons of raw oil reserves.
Resumo:
Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in Gubei depression, this paper builds high resolution sequence stratigraphic structure, sedimentary system, sandbody distribution, the effect of tectonic in sequence and sedimentary system evolution and model of tectonic-lithofacies. The pool formation mechanism of subtle trap is developed. There are some conclusions and views as follows. 1.With the synthetic sequence analysis of drilling, seismic, and well log, the highly resolution sequence structure is build in Gubei depression. They are divided two secondary sequences and seven three-order sequences in Shahejie formation. They are include 4 kinds of system traces and 7 kinds of sedimentary systems which are alluvial fan, under water fan, alluvial fan and fan-delta, fan-delta, lacustrine-fan, fluvial-delta-turbidite, lakeshore beach and bar, and deep lake system. Sandbody distribution is show base on third order sequence. 2.Based on a lot of experiment and well log, it is point out that there are many types of pore in reservoir with the styles of corrosion pore, weak cementing, matrix cementing, impure filling, and 7 kinds of diagenetic facies. These reservoirs are evaluated by lateral and profile characteristics of diagenetic facies and reservoir properties. 3.The effect of simultaneous faulting on sediment process is analyzed from abrupt slope, gentle slope, and hollow zone. The 4 kinds of tectonic lithofacies models are developed in several periods in Gubei depression; the regional distribution of subtle trap is predicted by hydro accumulation characteristics of different tectonic lithofacies. 4.There are 4 types of compacting process, which are normal compaction, abnormal high pressure, abnormal low pressure and complex abnormal pressure. The domain type is normal compaction that locates any area of depression, but normal high pressure is located only deep hollow zone (depth more than 3000m), abnormal low pressures are located gentle slope and faulted abrupt slope (depth between 1200~2500m). 5.Two types dynamic systems of pool formation (enclosed and partly enclosed system) are recognized. They are composed by which source rocks are from Es3 and Es4, cap rocks are deep lacustrine shale of Esl and Es3, and sandstone reservoirs are 7 kinds of sedimentary system in Es3 and Es4. According to theory of petroleum system, two petroleum systems are divided in Es3 and Es4 of Gubei depression, which are high or normal pressure self-source system and normal or low pressure external-source system. 6.There are 3 kinds of combination model of pool formation, the first is litholgical pool of inner depression (high or normal pressure self-source type), the second is fault block or fault nose pool in marginal of depression (normal type), the third is fault block-lithological pool of central low lifted block (high or normal pressure type). The lithological pool is located central of depression, other pool are located gentle or abrupt slope that are controlled by lithological, faulting, unconfirmed. 7.This paper raise a new technique and process of exploration subtle trap which include geological modeling, coring description and logging recognition, and well log constrained inversion. These are composed to method and theory of predicting subtle trap. Application these methods and techniques, 6 hydro objects are predicted in three zone of depression.
Resumo:
This article is an important part of "95" technological subject of SINOPEC. It has a large number of difficulties and workloads, and has significant theoretical meanings and practical value. The study area is composed of sandstone & conglomerate reservoir of alluvial fan & fan delta, which belong to Sha3 lower member and Sha4 upper member of lower tertiary of Yong'an Town Oilfield in Dongying Depression. The target stataum develops in the hanging wall of the synsedimentary fault in the scarp zone of Dongying Depression. The frequently intense movements result in the variation of sandstone and conglomerate reservoir and the evolution of the time and space of Sha3 lower member and Sha4 upper member in Yong'an Town Oilfield. As a result, it is difficult for the individual reservoir correlation at the root of fan, which bring about a tackle problem for the exploitation of oilfield. In this background, the research of fluid units will be more difficult. In this article, the new concepts, the new methods, and the new techniques of sedimentology, petroleum geology, reservoir geology, physics of crystal surface, dynamic & static state reservoir description and well logging geology are synthetically applied, and the computer technology are made full uses of, and the identifying, dividing and appraising of the two-formation-type sandstone & conglomerate reservoir fluid units of Sha3 lower member and Sha4 upper member systemically analyzed in Yong'an Town Oilfield, Dongying Depression. For the first time, the single-well model, the section model, the plane model, the nuclear magnetism log model, the microcosmic network model, the 4-D geology model and the simulation model of the two-formation-type reservoir fluid units of the of sandstone & conglomerate reservoir of Sha3 lower member and Sha4 upper member are established, and the formative mechanism and distributing & enrichment laws of oil-gas of the two type of sandstone and conglomerate reservoir fluid units are revealed. This article established the optimizing, identifying, classifying and appraising standard of the two-formation-type reservoir fluid units of the of sandstone and conglomerate reservoir of Sha3 lower member and Sha4 upper member, which settles the substantial foundations for static state model of the fluid units, reveals the macroscopic & microcosmic various laws of geometrical static state of the fluid units, and instructs the oil exploitation. This article established static state model of the two-formation-type sandstone and conglomerate reservoir fluid units by using the multi-subject theories, information and techniques, and reveals the geometrical configuration, special distribution and the oil-gas enrichment laws of the sandstone and conglomerate reservoir fluid units. For the first time, we established the nuclear magnetism log model of the two-formation-type sandstone and conglomerate reservoir of Sha3 lower member and Sha4 upper member, which reveals not only the character and distributing laws of the porosity and permeability, bat also the formation and distribution of the movable fluid. It established six type of microcosmic net model of the two-formation-type sandstone and conglomerate reservoir of Sha3 lower member and Sha4 upper member in the working area by using the advanced theories, such as rock thin section, SEM, image analysis, intrusive mercury, mold, rock C.T. measure & test image etc., which reveals the microcosmic characteristic of porosity & throat, filterate mode and microcosmic oil-gas enrichment laws of the sandstone and conglomerate reservoir. For the first time, it sets up the 4-D model and mathematic model of the sandstone and conglomerate reservoir, which reveals the distributing and evolving laws of macroscopic & microcosmic parameters of the two-formation-type sandstone and conglomerate reservoir and oil-gas in 4-D space. At the same time, it also forecasts the oil-gas distribution and instructs the oilfield exploitation. It established reservoir simulation model, which reveals the filterate character and distributing laws of oil-gas in different porosity & throat net models. This article established the assistant theories and techniques for researching, describing, indicating and forecasting the sandstone and conglomerate reservoir fluid units, and develops the theories and techniques of the land faces faulted basin exploitation geology. In instructing oilfield exploitation, it had won the notable economic & social benefits.
Resumo:
The foundation of reservoir model and residual oil prediction have been the core of reservoir detailed description for improved oil production and enhanced oil recovery. The traditional way of sandstone correlation based on the geometrical similarity of well-logs which emphasizes "based on the cycle and correlating from larger to smaller" has shown its theoretical limits when explaining the correlating and the scale, geometry, continuity, connectivity of sandstones and the law of the reservoir property. It has been an urgent and difficult subject to find new theory and methods to solve the reservoir correlation and property prediction. It's a new way to correlate strata and found framework of reservoir through the process-response analysis in the base-level cycles. And it is also possible to analyze the reservoir property in reservoir framework. Taking the reservoir of zonation 6-10 in S3~2 of Pucheng Oil Field in Henan Province as an example, we founded the detailed reservoir stratigraphic framework through base-level correlation. In the strata frame, sediment distribution and its development are discussed based on sediment volume partitioning and facies differentiation analysis. Reservoir heterogeneities and its relation to base-level are also discussed. The analysis of primary oil distribution shows the base-level controlled oil distribution in reservoir. In this paper, subjects as following are discussed in detail. Based on the analysis of sedimentary structure and sedimentary energy, the facies model was founded. Founding stratigraphy framework through base level analysis In the studying zone, one long term cycle, 6 middle term cycles and 27 short term cycles was identified and correlated. 3 Predicting the property of reservoir for improving oil development The base level controlled the property of sandbody. The short and very short term cycle controlled the pattern of heterogeneities in sandbody, and the middle and long term cycle controlled the area and inter-layer heterogeneities. On the lower location of the middle and long term base level, the sandbody is well developed, with a wide area and large thickness, while on the high location of base level, there is an opposite reservoir character. 4 The studying of reservoir development response and oil distribution making a solid base for development adjustment Primary oil distribution is controlled by base level location. It tells that the sandbody on the high base level location was poor developed for its difficulty to develop. While on the low location of the base level, the sandbody is well developed for its relative easy to develop and dominant role in the development, but high residual oil for its high original oil content.
Resumo:
This dissertation tries to combine the new theories of high-resolution sequence stratigraphy and reservoir architecture with fine sedimentology to form a integral theory system -"high-resolution sequence sedimentology", which can be applied widely ranging from the early petroleum exploration to the tertiary recovery stage in marine and terrestrial basin. So the west slope area in south of Songliao basin, in which, early-fine exploration have been developed, and Xingnan area of Daqing placantictine in high water-bearing and tertiary recovery stage, are selected as target areas to research and analyze. By applying high-resolution sequence stratigraphy theory as well as analysis of source area-facies, the west slope area has been divided into two source areas and three drainage systems and the following conclusions have been drawn: three high values sandstone areas, two sandstone pinchout zones and one stratigraphic pinchout overlap; the facies between Baicheng-Tongyu drainage system is frist ascertained as large-scale argillaceous filled plain facies; fine-grained braided channel-delta depositional system has been found; plane sedimentary facies and microfacies maps of different-scale sequence have been completed, and then twenty-eight lithologic traps have been detected in the east of Taobao-Zhenlai reverse fault zone; In no exploration area of the west, large-scale stratigraiphic overlap heavy oil reservoirs has first been found, which has become an important prograss. In Xingnan area, in the view of high-resolution sequence stratigraphy, the surface of unconformity (the bottom of SSC13) in P I group has been identified, and the following method and technique have been advanced: the division and correlation methods of short-scale base-level cycle sequence (SSC); the comprehensive research methods of SSC plane microfacies; the division technique of hierarchy and type of flow unit, the origin of large-scale composite sandbody and flow unit; And ,on the basis of these, 103 monosandstone bodies and 87 flow units of the third levels have been identified, and four levels of flow units model of five sandstone-bodies types have been established. Because it is a very difficult task all over the world to research architecture in subsurface monosandstone body, brings forward a series of techniques as follows: technique of researching architecture of thin interbed in subsurface monosandstone body; classification, type and liquid-resisting mechanism of thin interbed; multiple-remember vertical subsequence model of remaining oil in monosadstone body. Models of heterogeneity and architecture of thin interbed in five types of monosandstone body have been established. Applying these techniques, type and distribution of remaining oil in different types of monosandstone bodies have been predicated.
Resumo:
Guided by geological theories, the author analyzed factual informations and applied advanced technologies including logging reinterpretation, predicting of fractal-based fracture network system and stochastic modeling to the low permeable sandstone reservoirs in Shengli oilfield. A new technology suitable for precious geological research and 3D heterogeneity modeling was formed through studies of strata precious correlation, relation between tectonic evolution and fractural distribution, the control and modification of reservoirs diagenesis, logging interpretation mathematical model, reservoir heterogeneity, and so on. The main research achievements are as follows: (1) Proposed four categories of low permeable reservoirs, which were preferable, general, unusual and super low permeable reservoir, respectively; (2) Discussed ten geological features of the low permeable reservoirs in Shengli area; (3) Classified turbidite fan of Es_3 member of the Area 3 in Bonan oilfield into nine types of lithological facies, and established the facies sequences and patterns; (4) Recognized that the main diagenesis were compaction, cementation and dissolution, among which the percent compaction was up to 50%~90%; (5) Divided the pore space in ES_3 member reservoir into secondary pores with dissolved carbonate cement and residual intergranular pores strongly compacted and cemented; (6) Established logging interpretation mathematical model guided by facies- control modeling theory; (7) Predicted the fracture distribution in barriers using fractal method; (8) Constructed reservoir structural model by deterministic method and the 3D model of reservoir parameters by stochastic method; (9) Applied permeability magnitudes and directions to describe the fractures' effect on fluid flow, and presented four different fractural configurations and their influence on permeability; (10) Developed 3D modeling technology for the low permeable sandstone reservoirs. The research provided reliable geological foundation for the establishment and modification of development plans in low permeable sandstone reservoirs, improved the development effect and produced more reserves, which provided technical support for the stable and sustained development of Shengli Oilfield.
Resumo:
Based on the study of types, even temperature, the character of age-old fluid and fluid pressure of the reservoir fluid-inclusion in the Upper Paleozoic of Ordos Basin , combining with the diagenesis and character of gas geochemistry, reservoir sequence, cause of the low pressure reservoir formation and formation environment have been studied, the following knows are acquired: Abundant fluid-conclusions have developed in sandstone reservoir in Upper Paleozoic of Ordos Basin,and its kinds is numerous , also taking place some changes such as shrinking rock, cracking, stretching after formation. According to formation cause, fluid inclusion is divided into two types:successive and nonsuccessive inclusion. Nonsuccessive inclusion is further divided into brine inclusion, containing salt crystal inclusion, gaseity hydrocarbon conclusion and liquid hydrocarbon conclusion and so on. The gaseity hydrocarbon conclusion distributes at all the Basin, the liquid hydrocarbon conclusion mainly distributes at the East of Basin, and its two kinds of fluorescence color: blue and buff reflects at least two periods of oil filling and oil source of the different maturity. The study of diagenesis has indicated that five periods of diagenesis correspond to five periods inclusion's growth.The first and second period conclusions mainly distribute at the increasing margin of quartz, little amount and low even temperature, containing little gaseity hydrocarbon conclusion; The third and fourth conclusions are very rich, and having multiplicity forms, gaseity hydrocarbon conclusion of different facies, distributing at the increasing margin and crevice of quartz, its even temperature is between 85℃and 135℃;The fifth inclusion is relatively few ,mainly distributing at vein quartz and calcite, and developing few gaseity hydrocarbon conclusion. The fluid in the inclusion is mainly NaCl brine:low and high salinity brine fluid(containing salt crystal).The former salinity is between 0.18% and 18.55%,and mainly centralized distributing at three sectongs: from 0% to 4%, from 6% to 8%, from 10% to 14%, expressing that the alternation of the underground fluid was not intense, the conservation condition was good in different periods. The trapping pressure of the gaseity hydrocarbon conclusion calculated by PVTsim(V10)simulation is between 21.39 MPa and 42.58MPa,the average is 28.99MPa,mainlydistributes at between 24 MPa and 34MPa,and having a character of gradually lower from early to late time. The pressure of SuLiGe and WuShenQi dropped quickly in early time, and YuLin, ShenMu-MIZhi gas area dropped slowly in early and quickly in late time, ha portrait the change of trapping pressure can be divided into three old-age pressure systems: TaiYuan-ShanXi formation, low ShiHeZi formation and high ShiHeZi-ShiQianFeng formation. In plane, the trapping pressure dropped lowly from south to north in main reservoir period, and this reflects the gas migrating direction in the geohistory period. The analysis of gas component and monnmer hydrocarbon isotope indicates that the gas in Upper Paleozoic of Ordos Basin is coal-seam gas. The gas C_1-C_4 rnonnmer hydrocarbon isotopes has distinct differences in different stratums of different areas, and forming YuLin, SuLiGe and ShenMu-MIZhi three different distributing types. To sum up, gas reservoir combination in Upper Paleozoic of Ordos Basin can be divided into three sets of combination of reservoir formation: endogenesis type, near source type and farther source type,and near source gas combinations of reservoir formation is the main gas exploration area for its high gas filling intensity, large reservoir size.
Resumo:
The bedding sequences, based on the results from others, have been constructed by geological researches. Furthermore, the reservoir, gas-bearing characteristics and reservoir-blanket association have been increasingly understudied by the geological and seismic studies as well as the log data. The deep dynamics for the formation and development of Shangdu basin resulted from complicated fault system and its continued action have been obtained. The studies on the reservoir condition reveal that the mantle-derived magmatism provided the materials for the CO_2 gas reservoir after Paleogene Period and the huge regional fault not only control the evolution of basin and sedimentary but also pay a role as a passage of the CO_2. The sandstone of river course formed in Paleogene System, with very good reservoir condition, are widely developed in the study area. The blanket with good condition is composed by the basalt in Hannuoba Formation and lake facies shale of Shangdou Formation. Local structures and good encirclement are resulted from the different sedimentary environment and later differential sagging. All statements above demonstrate that there is a very good pool-forming condition for the CO_2. In addition, the high abundance of H_2 recognized during drill exploration are also of significance.More than 30 inorganic CO_2 gas reservoirs have been determined during the exploration for the oil-bearing basins in the eastern China, which are developed along the two sides of Tanlu Fault or within it. In which the CO_2 gas reservoir in Shangdou basin is an inorganic gas reservoir far away from Tanlu Fault. Thus the determination of the CO_2 gas reservoir in Shangdou basin is significant for sciences due to the first exploration for the inorganic CO_2 gas reservoir in our country. The geophysical exploration carried on the CO_2 gas reservoir is benefited for the research of prospecting techniques of CO_2 reservoir.
Resumo:
The Gangxi oil field has reached a stage of high water production. The reservoir parameters, such as reservoir physical characteristics, pore structure, fluid, have obviously changed. This thesis therefore carries out a study of these parameters that control reservoir characteristics, physical and chemical actions that have taken place within the reservoirs due to fluid injection, subsequent variations of reservoir macroscopic physical features, microscopic pore structures, seepages, and formation fluid properties. This study rebuilds a geologic model for this oil field, establishes a log-interpreting model, proposes a methodology for dealing with large pore channels and remnant oil distribution, and offers a basis for effective excavation of potential oil, recovery planning, and improvement of water-injection techniques. To resolve some concurrent key problems in the process of exploration of the Gangxi area, this thesis carries out a multidisciplinary research into reservoir geology, physical geography, reservoir engineering, and oil-water well testing. Taking sandstone and flow unit as objects, this study establishes a fine geologic model by a quantificational or semi-quantificational approach in order to understand the remnant oil distribution and the reservoir potential, and accordingly proposes a plan for further exploration. By rebuilding a geological model and applying reservoir-engineering methods, such as numerical simulation, this thesis studies the oil-water movement patterns and remnant-oil distribution, and further advances a deployment plan for the necessary adjustments and increase of recoverable reserves. Main achievements of this study are as follows: 1. The Minghazhen Formation in the Gangxi area is featured by medium-sinuosity river deposits, manifesting themselves as a transitional type between typical meandering and braided rivers. The main microfacies are products of main and branch channels, levee, inter-channel overflows and crevasse-splay floodplains. The Guantao Group is dominantly braided river deposit, and microfacies are mainly formed in channel bar, braided channel and overbank. Main lithofacies include conglomerate, sandstone, siltstone and shale, with sandstone facies being the principal type of the reservoir. 2. The reservoir flow unit of the Gangxi area can be divided into three types: Type I is a high-quality heterogeneous seepage unit, mainly distributed in main channel; Type II is a moderate-quality semi-heterogeneous seepage unit, mainly distributed in both main and branch channels, and partly seen within inter-channel overflow microfacies; Type III is a low-quality, relatively strong heterogeneous seepage unit, mainly distributed in inter-channel overflow microfacies and channel flanks. 3. Flow units and sedimentary microfacies have exerted relatively strong controls on the flowing of underground oil-water: (1) injection-production is often effective in the float units of Type I and II, whilst in the same group of injection-production wells, impellent velocity depends on flow unit types and injection-production spacing; (2) The injection-production of Type III flow unit between the injection-production wells of Type I and II flow units, however, are little effective; (3) there can form a seepage shield in composite channels between channels, leading to inefficient injection and production. 4. Mainly types of large-scale remnant-oil distribution are as follows: (1) remnant oil reservoir of Type III flow unit; (2) injection-production well group of remnant oil area of Type III flow unit; (3) remnant oil reservoirs that cannot be controlled by well network, including reservoir featured by injection without production, reservoir characterized by production without injection, and oil reservoir at which no well can arrive; (4) remnant oil area where injection-production system is not complete. 5. Utilizing different methods to deal with different sedimentary types, sub-dividing the columns of up to 900 wells into 76 chronostratigraphic units. Four transitional sandstone types are recognized, and contrast modes of different sandstone facies are summarized Analyzing in details the reservoirs of different quality by deciphering densely spaced well patterns, dividing microscopic facies and flow units, analyzing remnant oil distribution and its effect on injection-production pattern, and the heterogeneity. Theory foundation is therefore provided for further excavation of remnant oil. Re-evaluating well-log data. The understanding of water-flood layers and conductive formations in the Gangxi area have been considerably improved, and the original interpretations of 233 wells have changed by means of double checking. Variations of the reservoirs and the fluid and formation pressures after water injection are analyzed and summarized Studies are carried out of close elements of the reservoirs, fine reservoir types, oil-water distribution patterns, as well as factors controlling oil-gas enrichment. A static geological model and a prediction model of important tracts are established. Remaining recoverable reserves are calculated of all the oil wells and oil-sandstones. It is proposed that injection-production patterns of 348 oil-sandstones should be adjusted according to the analysis of adaptability of all kinds of sandstones in the injection-production wells.
Resumo:
Through years of practice, reservoir management has already become the basic mode of foreign oil companies to realize the high-efficient development of the oil field. From the view of reservoir development and technological economy, reservoir management regards the study of the reservoir engineering, designs of reservoir projects and the dynamic analysis of the reservoir's performance as a system. In the fields of reservoir description, the establishment of the geological models and development models, the dynamic simulations of reservoir exploitation and the design of the oil engineering, reservoir management emphasizes the cooperation of the geology and the engineering, the combination of the engineering technology and the economic evaluation. In order to provide the means and basis for the reservoir geology study, reservoir evaluation, reserves calculation, numerical simulation, development plan and risk analysis, it adopts the reservoir management activities(team work) to make and implement the optimized oil field development management strategies so that secientific and democratic decision making can be achieved. Under the planned economic system for a long time, the purpose of Chinese reservoir development has been to fulfill the" mandatory" production task. With the deepening of the reform, the management organization of Chinese petroleum enterprises has been gradually going through the transition and reforms to the operational entity and the establishment of the mode of oil companies under the socialist market economy system. This research aims at introducing the advanced reservoir management technique from foreign countries to further improve the reservoir development results and wholly raise the economic benefits of Chinese mature land facieses sandstone reservoirs in the later stage of the water flooding. We are going to set up a set of modern reservoir management modes according to the reservoir features, current situation and existing problems of GangXi oil field of DaGang oil company. Through the study and implementation of the reservoir description and numerical simulation technology effectively, we plan to work out integrated adjustment projects, to study the related technology of oil recovery; to set up the effective confirmable data procedure and data management system of the reservoir management, to establish the coordinated model and workbench related to geology, engineering and economy in order to realize the real time supervision and evaluation on the process of reservoir development. We hope to stipulate modernization management tools for GangXi oil fields to rationally utilize various kinds of existing technological methods and to realize the economic exploitation and achieve the maximum benefits from the reservoir. The project of the modem reservoir management will be carried out on the GangXi oil field of DaGang oil company for this oil field is typical and has integrated foundamental materials and perfect networks. Besides, it is located in the good geographical position enjoying very convenient traffic. Implementing modern reservoir management will raise the recovery ratio, reduce the production cost and improve the working efficiency. Moreover, the popularization of modern reservoir management will improve the comprehensive benefits of DaGang oil company and even the whole Petro China. Through the reserch of this project, the following technical indicators can be reached: Establishing the concept of modern reservoir management. Establishing a set of integrated data information management system adapt to the features of GangXi reservoir. 3. Forming technical research modes of modern reservoir management suitable for mature reservoirs in the later developing stage. 4. Advancing projects of GangXi reservoir which are maxium optimized in engineering technique and economic benefits of oil exploitation. Besides, this set of technology, research principle and method can guide the mature reservoir of DaGang oil field and even the whole PetroChina to develop the further research of reservoir adjustment and improve the reservoir recovery factor and developing level constantly.