963 resultados para s-uniformity
Resumo:
Further miniaturization of magnetic and electronic devices demands thin films of advanced nanomaterials with unique properties. Spinel ferrites have been studied extensively owing to their interesting magnetic and electrical properties coupled with stability against oxidation. Being an important ferrospinel, zinc ferrite has wide applications in the biological (MRI) and electronics (RF-CMOS) arenas. The performance of an oxide like ZnFe2O4 depends on stoichiometry (defect structure), and technological applications require thin films of high density, low porosity and controlled microstructure, which depend on the preparation process. While there are many methods for the synthesis of polycrystalline ZnFe2O4 powder, few methods exist for the deposition of its thin films, where prolonged processing at elevated temperature is not required. We report a novel, microwave-assisted, low temperature (<100°C) deposition process that is conducted in the liquid medium, developed for obtaining high quality, polycrystalline ZnFe2O4 thin films on technologically important substrates like Si(100). An environment-friendly solvent (ethanol) and non-hazardous oxide precursors (β-diketonates of Zn and Fe in 1:2 molar ratio), forming a solution together, is subjected to irradiation in a domestic microwave oven (2.45 GHz) for a few minutes, leading to reactions which result in the deposition of ZnFe2O4 films on Si (100) substrates suspended in the solution. Selected surfactants added to the reactant solution in optimum concentration can be used to control film microstructure. The nominal temperature of the irradiated solution, i.e., film deposition temperature, seldom exceeds 100°C, thus sharply lowering the thermal budget. Surface roughness and uniformity of large area depositions (50x50 mm2) are controlled by tweaking the concentration of the mother solution. Thickness of the films thus grown on Si (100) within 5 min of microwave irradiation can be as high as several microns. The present process, not requiring a vacuum system, carries a very low thermal budget and, together with a proper choice of solvents, is compatible with CMOS integration. This novel solution-based process for depositing highly resistive, adherent, smooth ferrimagnetic films on Si (100) is promising to RF engineers for the fabrication of passive circuit components. It is readily extended to a wide variety of functional oxide films.
Resumo:
We propose a set of metrics that evaluate the uniformity, sharpness, continuity, noise, stroke width variance,pulse width ratio, transient pixels density, entropy and variance of components to quantify the quality of a document image. The measures are intended to be used in any optical character recognition (OCR) engine to a priori estimate the expected performance of the OCR. The suggested measures have been evaluated on many document images, which have different scripts. The quality of a document image is manually annotated by users to create a ground truth. The idea is to correlate the values of the measures with the user annotated data. If the measure calculated matches the annotated description,then the metric is accepted; else it is rejected. In the set of metrics proposed, some of them are accepted and the rest are rejected. We have defined metrics that are easily estimatable. The metrics proposed in this paper are based on the feedback of homely grown OCR engines for Indic (Tamil and Kannada) languages. The metrics are independent of the scripts, and depend only on the quality and age of the paper and the printing. Experiments and results for each proposed metric are discussed. Actual recognition of the printed text is not performed to evaluate the proposed metrics. Sometimes, a document image containing broken characters results in good document image as per the evaluated metrics, which is part of the unsolved challenges. The proposed measures work on gray scale document images and fail to provide reliable information on binarized document image.
Resumo:
The present experimental study investigates the influence of post-deposition annealing on the transverse piezoelectric coefficient (d(31)) value of ZnO thin films deposited on a flexible metal alloy substrate, and its relationship with the vibration sensing performance. Highly c-axis oriented and crystalline ZnO thin films were deposited on flexible Phynox alloy substrate via radio frequency (RF) reactive magnetron sputtering. ZnO thin film samples were annealed at different temperatures ranging from 100 degrees C to 500 degrees C, resulting in the temperature of 300 degrees C determined as the optimum annealing temperature. The crystallinity, morphology, microstructure, and rms surface roughness of annealed ZnO thin films were systematically investigated by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM), respectively. The piezoelectric d(31) coefficient value was measured by 4-point bending method. ZnO thin film annealed at 300 degrees C was highly c-axis oriented, crystalline, possesses fine surface morphology with uniformity in the grain size. This film showed higher d(31) coefficient value of 7.2 pm V-1. A suitable in-house designed and developed experimental set-up, for evaluating the vibration sensing performance of annealed ZnO thin films is discussed. As expected the ZnO thin film annealed at 300 degrees C showed relatively better result for vibration sensing studies. It generates comparatively higher peak output voltage of 147 mV, due to improved structural and morphological properties, and higher piezoelectric d(31) coefficient value. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
A transient 2D axi-symmetric and lumped parameter (LP) model with constant outflow conditions have been developed to study the discharge capacity of an activated carbon bed. The predicted discharge times and variations in bed pressure and temperature are in good agreement with experimental results obtained from a 1.82 l adsorbed natural gas (ANG) storage system. Under ambient air conditions, a maximum temperature drop of 29.5 K and 45.5 K are predicted at the bed center for discharge rates of 1.0 l min(-1) and 5.0 l min(-1) respectively. The corresponding discharge efficiencies are 77% and 71.5% respectively with discharge efficiencies improving with decreasing outflow rates. Increasing the LID ratio from 1.9 to 7.8 had only a marginal increase in the discharge efficiency. Forced convection (exhaust gas) heating had a significant effect on the discharge efficiency, leading to efficiencies as high as 92.8% at a discharge of 1.0 l min(-1) and 88.7% at 5 l min(-1). Our study shows that the LP model can be reliably used to obtain discharge times due to the uniform pressure distributions in the bed. Temperature predictions with the LP model were more accurate at ambient conditions and higher discharge rates, due to greater uniformity in bed temperatures. For the low thermal conductivity carbon porous beds, our study shows that exhaust gas heating can be used as an effective and convenient strategy to improve the discharge characteristics and performance of an ANG system. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Significant changes are reported in extreme rainfall characteristics over India in recent studies though there are disagreements on the spatial uniformity and causes of trends. Based on recent theoretical advancements in the Extreme Value Theory (EVT), we analyze changes in extreme rainfall characteristics over India using a high-resolution daily gridded (1 degrees latitude x 1 degrees longitude) dataset. Intensity, duration and frequency of excess rain over a high threshold in the summer monsoon season are modeled by non-stationary distributions whose parameters vary with physical covariates like the El-Nino Southern Oscillation index (ENSO-index) which is an indicator of large-scale natural variability, global average temperature which is an indicator of human-induced global warming and local mean temperatures which possibly indicate more localized changes. Each non-stationary model considers one physical covariate and the best chosen statistical model at each rainfall grid gives the most significant physical driver for each extreme rainfall characteristic at that grid. Intensity, duration and frequency of extreme rainfall exhibit non-stationarity due to different drivers and no spatially uniform pattern is observed in the changes in them across the country. At most of the locations, duration of extreme rainfall spells is found to be stationary, while non-stationary associations between intensity and frequency and local changes in temperature are detected at a large number of locations. This study presents the first application of nonstationary statistical modeling of intensity, duration and frequency of extreme rainfall over India. The developed models are further used for rainfall frequency analysis to show changes in the 100-year extreme rainfall event. Our findings indicate the varying nature of each extreme rainfall characteristic and their drivers and emphasize the necessity of a comprehensive framework to assess resulting risks of precipitation induced flooding. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A divergence-free velocity field is usually sought in numerical simulations of incompressible fluids. We show that the particle methods that compute a divergence-free velocity field to achieve incompressibility suffer from a volume conservation issue when a finite time-step position update scheme is used. Further, we propose a deformation gradient based approach to arrive at a velocity field that reduces the volume conservation issues in free surface flows and maintains density uniformity in internal flows while retaining the simplicity of first order time updates. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
A facile methodology for synthesizing Au-Cu2S hybrid nanoparticles is presented. Au-Cu2S nanoparticles have application in visible light driven photocatalytic degradation of dyes. Detailed microstructural and compositional characterization illustrated that the hybrid nanoparticles are composed of cube shaped Au-Cu solid solution and hemispherical shaped Cu2S phases. Investigation of nanoparticles extracted at different stages of the synthesis process revealed that the mechanism of formation of hybrid nanoparticles involved initial formation of isolated cube shaped pure Au nanoparticles and Cu-thiolate complex. In the subsequent stages, the Au nanoparticles get adsorbed onto the Cu-thiolate complex which is followed by the decomposition of the Cu-thiolate complex to form Au-Cu2S hybrid nanoparticles. This study also illustrates that an optimum concentration of dodecanethiol is required both for achieving size and morphological uniformity of the participating phases and for their attachment to form a hybrid nanoparticle.
Resumo:
The room-temperature synthesis of mono-dispersed gold nanoparticles, by the reduction of chlorauric acid (HAuCl4) with tannic acid as the reducing and stabilizing agent, is carried out in a microchannel. The microchannel is fabricated with one soft wall, so that there is a spontaneous transition to turbulence, and thereby enhanced mixing, when the flow Reynolds number increases beyond a critical value. The objective of the study is to examine whether the nanoparticle size and polydispersity can be modified by enhancing the mixing in the microchannel device. The flow rates are varied in order to study nanoparticle formation both in laminar flow and in the chaotic flow after transition, and the molar ratio of the chlorauric acid to tannic acid is also varied to study the effect of molar ratio on nanoparticle size. The formation of gold nanoparticles is examined by UV-visual spectroscopy and the size distribution is determined using scanning electron microscopy. The synthesized nanoparticles size decreases from a parts per thousand yen6 nm to a parts per thousand currency sign4 nm when the molar ratio of chlorauric acid to tannic acid is increased from 1 to 20. It is found that there is no systematic variation of nanoparticle size with flow velocity, and the nanoparticle size is not altered when the flow changes from laminar to turbulent. However, the standard deviation of the size distribution decreases by about 30% after transition, indicating that the enhanced mixing results in uniformity of particle size.
Resumo:
The high-kappa gate dielectrics, specifically amorphous films offer salient features such as exceptional mechanical flexibility, smooth surfaces and better uniformity associated with low leakage current density. In this work, similar to 35 nm thick amorphous ZrO2 films were deposited on silicon substrate at low temperature (300 degrees C, 1 h) from facile spin-coating method and characterized by various analytical techniques. The X-ray diffraction and X-ray photoelectron spectroscopy reveal the formation of amorphous phase ZrO2, while ellipsometry analysis together with the Atomic Force Microscope suggest the formation of dense film with surface roughness of 1.5 angstrom, respectively. The fabricated films were integrated in metal-oxide-semiconductor (MOS) structures to check the electrical capabilities. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), dielectric constant (kappa) and oxide trapped charges (Q(ot)) extracted from high frequency (1 MHz) C-V curve are 186 pF, 104 pF, 0.37V, 15 and 2 x 10(-11) C, respectively. The small flat band voltage 0.37V, narrow hysteresis and very little frequency dispersion between 10 kHz-1 MHz suggest an excellent a-ZrO2/Si interface with very less trapped charges in the oxide. The films exhibit a low leakage current density 4.7 x 10(-9)A/cm(2) at 1V. In addition, the charge transport mechanism across the MOSC is analyzed and found to have a strong bias dependence. The space charge limited conduction mechanism is dominant in the high electric field region (1.3-5 V) due to the presence of traps, while the trap-supported tunneling is prevailed in the intermediate region (0.35-1.3 V). Low temperature solution processed ZrO2 thin films obtained are of high quality and find their importance as a potential dielectric layer on Si and polymer based flexible electronics. (C) 2016 Published by Elsevier B.V.
Resumo:
The magnetic damping effect of the non-uniform magnetic field on the floating-zone crystal growth process in microgravity is studied by numerical simulation. The results show that the non-uniform magnetic field with designed configuration can effectively reduce the flow near the free surface and then in the melt zone. At the same time, the designed magnetic field can improve the impurity concentration non-uniformity along the solidification interface. The primary principles of the magnetic field configuration design are also discussed.
Resumo:
A quasi-steady state growth and dissolution in a 2-D rectangular enclosure is numerically investigated. This paper is an extension to indicate the effects of the orientation of gravity on the concentration field in crystallization from solution under microgravity, especially on the lateral non-uniformity of concentration distribution at the growth surface. The thermal and solute convection are included in this model.
Resumo:
To improve the quality of driving flows generated with detonation-driven shock tunnels operated in the forward-running mode, various detonation drivers with specially designed sections were examined. Four configurations of the specially designed section, three with different converging angles and one with a cavity ring, were simulated by solving the Euler equations implemented with a pseudo kinetic reaction model. From the first three cases, it is observed that the reflection of detonation fronts at the converging wall results in an upstream-traveling shock wave that can increase the flow pressure that has decreased due to expansion waves, which leads to improvement of the driving flow. The configuration with a cavity ring is found to be more promising because the upstream-traveling shock wave appears stronger and the detonation front is less overdriven. Although pressure fluctuations due to shock wave focusing and shock wave reflection are observable in these detonation-drivers, they attenuate very rapidly to an acceptable level as the detonation wave propagates downstream. Based on the numerical observations, a new detonation-driven shock tunnel with a cavity ring is designed and installed for experimental investigation. Experimental results confirm the conclusion drawn from numerical simulations. The generated driving flow in this shock tunnel could maintain uniformity for as long as 4 ms. Feasibility of the proposed detonation driver for high-enthalpy shock tunnels is well demonstrated.
Resumo:
The magnetic fields produced by electrical coils are designed for damping the the thermocapillary convection in a floating half-zone in microgravity. The fields are designed specially to reduce the flow near the free surface and then in the melt zone by adjusting the longitudinal coil positions close to the melt zone. The effects of the designed magnetic fields on reducing the flow velocity and temperature distribution non-uniformity in the melt zone are stronger than those of the case of an uniform longitudinal magnetic field obtained by numerical simulation, particularly at the melt-rod interface. It brings fundamental insights into the heat and mass transfer control at the solidification interface by the magnetic field design for crystal growth by the floating full-zone method.
Resumo:
We have constructed plasmids to be used for in vitro signature-tagged mutagenesis (STM) of Campylobacter jejuni and used these to generate STM libraries in three different strains. Statistical analysis of the transposon insertion sites in the C. jejuni NCTC 11168 chromosome and the plasmids of strain 81-176 indicated that their distribution was not uniform. Visual inspection of the distribution suggested that deviation from uniformity was not due to preferential integration of the transposon into a limited number of hot spots but rather that there was a bias towards insertions around the origin. We screened pools of mutants from the STM libraries for their ability to colonize the ceca of 2-week-old chickens harboring a standardized gut flora. We observed high-frequency random loss of colonization proficient mutants. When cohoused birds were individually inoculated with different tagged mutants, random loss of colonization-proficient mutants was similarly observed, as was extensive bird-to-bird transmission of mutants. This indicates that the nature of campylobacter colonization in chickens is complex and dynamic, and we hypothesize that bottlenecks in the colonization process and between-bird transmission account for these observations.
Resumo:
The present paper investigates dispersed-phase flow structures of a dust cloud induced by a normal shock wave moving at a constant speed over a flat surface deposited with fine particles. In the shock-fitted coordinates, the general equations of dusty-gas