975 resultados para root development
Resumo:
Controlling Armillaria infections by physical and chemical methods alone is at present inadequate, ineffective, or impractical. Effective biological control either alone or in integration with another control strategy appears necessary. Biological control agents of Armillaria function by the antagonists inhibiting or preventing its rhizomorphic and mycelial development, by limiting it to substrate already occupied, by actively pre-empting the substrate, or by eliminating the pathogen from substrate it has already occupied. Among the most thoroughly investigated antagonists of Armillaria are Trichoderma species. Depending on the particular isolate of a Trichoderma species, control may be achieved by competition, production of antibiotics, or by mycoparasitism. The level of control is also influenced by the growth and carrier substrate of the antagonist, time of application in relation to the occurrence of the disease, and several environmental conditions. Among a range of the other antagonists are several cord-forming fungi and an isolate of Dactylium dendroides. Integrating biological methods with an appropriate method of chemical could control the disease more effectively. However it is essential to determine whether the antagonist or the fungicide should be applied first, and the time interval between.
Resumo:
Fine roots constitute an interface between plants and soils and thus play a crucial part in forest carbon, nutrient and water cycles. Their continuous growth and dieback, often termed turnover of fine roots, may constitute a major carbon input to soils and significantly contribute to belowground carbon cycle. For this reason, it is of importance to accurately estimate not only the standing biomass of fine roots, but also its rate of turnover. To date, no direct and reliable method of measuring fine root turnover exists. The main reason for this is that the two component processes of root turnover, namely growth and dieback of fine roots, nearly always happen in the same place and at the same time. Further, the estimation of fine root turnover is complicated by the inaccessibility of tree root systems, its labour intensiveness and is often compounded by artefacts created by soil disturbance. Despite the fact that the elucidation of the patterns and controls of forest fine root turnover is of utmost importance for the development of realistic carbon cycle models, our knowledge of the contribution of fine root turnover to carbon and nutrient cycles in forests remains uncertain. This chapter will detail all major methods currently used for estimating fine root turnover and highlight their advantages, as well as drawbacks.
Resumo:
Models of root system growth emerged in the early 1970s, and were based on mathematical representations of root length distribution in soil. The last decade has seen the development of more complex architectural models and the use of computer-intensive approaches to study developmental and environmental processes in greater detail. There is a pressing need for predictive technologies that can integrate root system knowledge, scaling from molecular to ensembles of plants. This paper makes the case for more widespread use of simpler models of root systems based on continuous descriptions of their structure. A new theoretical framework is presented that describes the dynamics of root density distributions as a function of individual root developmental parameters such as rates of lateral root initiation, elongation, mortality, and gravitropsm. The simulations resulting from such equations can be performed most efficiently in discretized domains that deform as a result of growth, and that can be used to model the growth of many interacting root systems. The modelling principles described help to bridge the gap between continuum and architectural approaches, and enhance our understanding of the spatial development of root systems. Our simulations suggest that root systems develop in travelling wave patterns of meristems, revealing order in otherwise spatially complex and heterogeneous systems. Such knowledge should assist physiologists and geneticists to appreciate how meristem dynamics contribute to the pattern of growth and functioning of root systems in the field.
Resumo:
Sugars in plants, derived from photosynthesis, act as substrates for energy metabolism and the biosynthesis of complex carbohydrates, providing sink tissues with the necessary resources to grow and to develop. In addition, sugars can act as secondary messengers, with the ability to regulate plant growth and development in response to biotic and abiotic stresses. Sugar-signalling networks have the ability to regulate directly the expression of genes and to interact with other signalling pathways. Photosynthate is primarily transported to sink tissues as sucrose via the phloem. Under phosphorus (P) starvation, plants accumulate sugars and starch in their leaves. Increased loading of sucrose to the phloem under P starvation not only functions to relocate carbon resources to the roots, which increases their size relative to the shoot, but also has the potential to initiate sugar-signalling cascades that alter the expression of genes involved in optimizing root biochemistry to acquire soil phosphorus through increased expression and activity of inorganic phosphate transporters, the secretion of acid phosphatases and organic acids to release P from the soil, and the optimization of internal P use. This review looks at the evidence for the involvement of phloem sucrose in co-ordinating plant responses to P starvation at both the transcriptional and physiological levels.
Resumo:
Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug-induced peripheral neuropathy (stavudine, d4T). Mechanical and thermal hypersensitivity was attenuated by 40% to 50% as a result of HDACI treatment, but only if started before any insult. The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain.
Resumo:
Rootstock-induced dwarfing of apple scions revolutionized global apple production during the twentieth century, leading to the development of modern intensive orchards. A high root bark percentage (the percentage of the whole root area constituted by root cortex) has previously been associated with rootstock induced dwarfing in apple. In this study, the root bark percentage was measured in a full-sib family of ungrafted apple rootstocks and found to be under the control of three loci. Two QTL for root bark percentage were found to co-localise to the same genomic regions on chromosome 5 and chromosome 11 previously identified as controlling dwarfing, Dw1 and Dw2, respectively. A third QTL was identified on chromosome 13 in a region that has not been previously associated with dwarfing. The development of closely linked 3 Sequence-tagged site STS markers improved the resolution of allelic classes thereby allowing the detection of dominance and epistatic interactions between loci, with high root bark percentage only occurring in specific allelic combinations. In addition, we report a significant negative correlation between root bark percentage and stem diameter (an indicator of tree vigour), measured on a clonally propagated grafted subset of the mapping population. The demonstrated link between root bark percentage and rootstock-induced dwarfing of the scion leads us to propose a three-locus model that is able to explain levels of dwarfing from the dwarf ‘M.27’ to the semi-invigorating rootstock ‘M.116’. Moreover, we suggest that the QTL on chromosome 13 (Rb3) might be analogous to a third dwarfing QTL, Dw3 that has not previously been identified.
Resumo:
Introduction: The objective of this study was to investigate the expression of matrix metalloproteinases (MM Ps) in apical periodontitis and during the periapical healing phase after root canal treatment. Methods: Apical periodontitis was induced in dog teeth, and root canal treatment was performed in a single visit or by using an additional calcium hydroxide root canal dressing. One hundred eighty days after treatment the presence of inflammation was examined, and tissues were stained to detect bacteria. Bacterial status was correlated to the degree of tissue organization, and to further investigate molecules involved in this process, tissues were stained for MMP-1, MMP-2, MMP-8, and MMP-9. Data were analyzed by using one-way analysis of variance followed by Tukey test or Kruskal-Wallis followed by Dunn test. Results: Teeth with apical periodontitis that had root canal therapy performed in a single visit presented an intense inflammatory cell infiltrate. Periapical tissue was extremely disorganized, and this was correlated with the presence of bacteria. Higher MMP expression was evident, similar to teeth with untreated apical periodontitis. In contrast, teeth with apical periodontitis submitted to root canal treatment with calcium hydroxide presented a lower inflammatory cell infiltrate. This group had moderately organized connective tissue, lower prevalence of bacteria, and lower number of MMP-positive cells, similar to healthy teeth submitted to treatment. Conclusions: Teeth treated with calcium hydroxide root canal dressing exhibited a lower percentage of bacterial contamination, a lower MMP expression, and a more organized extracellular matrix, unlike those treated in a single visit. This suggests that calcium hydroxide might be beneficial in tissue repair processes. (J Endod 2010;36:231-237)
Resumo:
Studies of wide-band tracheids (WBTs) have aroused the interest of researchers who have searched to understand their origin, function, and phylogenetic implications. The present research has the objective of studying the distribution of WBTs, together with anatomic aspects of vegetative organs in different stages of Pilosocereus aurisetus, in order to understand the occurrence of WBTs in columnar cacti. Transverse and longitudinal sections of the stem (apex, middle, and base) and the root were made. The epidermis was present in the photosynthetic stem, but was substituted by periderm which was already well established in the root. The differentiation of the cortex is visible in the middle of the stem, becoming homogeneous in the base. WBTs were observed in the base and middle of young stems (WBT monomorphic wood); common in stems of globular cacti. However, WBTs/ fibrous dimorphic wood was observed in the base of adult stems, a result of the cambial activity producing vessel elements and fibers. This wood polymorphism of the Cactaceae can be interpreted as cambial variation, a common character of Caryophyllales. Due to the small size of the plant, the presence of WBTs in the young stem may be related to water retention necessary for its development, rather than to physical support of the plant.
Resumo:
During the process of lateral organ development after plant decapitation, cell division and differentiation occur in a balanced manner initiated by specific signaling, which triggers the reentrance into the cell cycle. Here, we investigated short-term variations in the content of some endogenous signals, such as auxin, cytokinins (Cks), and other mitogenic stimuli (sucrose and glutamate), which are likely correlated with the cell cycle reactivation in the axillary bud primordium of pineapple nodal segments. Transcript levels of cell cycle-associated genes, CycD2;1, and histone H2A were analyzed. Nodal segments containing the quiescent axillary meristem cells were cultivated in vitro during 24 h after the apex removal and de-rooting. From the moment of stem apex and root removal, decapitated nodal segment (DNS) explants showed a lower indol-3-acetic acid (IAA) concentration than control explants, and soon after, an increase of endogenous sucrose and iP-type Cks were detected. The decrease of IAA may be the primary signal for cell cycle control early in G1 phase, leading to the upregulation of CycD2;1 gene in the first h. Later, the iP-type Cks and sucrose could have triggered the progression to S-phase since there was an increase in H2A expression at the eighth h. DNS explants revealed substantial increase in Z-type Cks and glutamate from the 12th h, suggesting that these mitogens could also operate in promoting pineapple cell cycle progression. We emphasize that the use of non-synchronized tissue rather than synchronous cell suspension culture makes it more difficult to interpret the results of a dynamic cell division process. However, pineapple nodal segments cultivated in vitro may serve as an interesting model to shed light on apical dominance release and the reentrance of quiescent axillary meristem cells into the cell cycle.
Resumo:
We investigated the possible participation of TRPV1 channels in retinal apoptosis and overall development. Retinas from newborn, male albino rats were treated in vitro with capsazepine, a TRPV1 antagonist. The expression of cell cycle markers was not changed after TRPV1 blockade, whereas capsazepine reduced the number of apoptotic cells throughout the retina,increased ERK1/2 and p38 phosphorylation and slightly reduced JNK phosphorylation. The expression of BAD, Bcl-2, as well as integral and cleaved capsase-3 were similar in all experimental conditions. Newborn rats were kept for 2 months after receiving high doses of capsazepine. In their retinas, calbindin and parvalbumin protein levels were upregulated, but only the number of amacrine-like, parvalbumin-positive cells was increased. The numbers of calretinin, calbindin, ChAT, vimentin, PKC-alpha and GABA-positive cells were similar in both conditions. Protein expression of synapsin Ib was also increased in the retinas of capsazepine-treated rats. Calretinin, vimentin, GFAP, synapsin Ia, synaptophysin and light neurofilament protein levels were not changed when compared to control values. Our results indicate that TRPV1 channels play a role in the control of the early apoptosis that occur during retinal development, which might be dependent on MAPK signaling. Moreover, it seems that TRPV1 function might be important for neuronal and synaptic maturation in the retina. (C) 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
The control of Pratylenchus goodeyi a common nematode parasite of banana crop in Madeira Island can benefit from searching for natural nematicides through plants extracts. With this aim we submitted Solanum nigrum and S. sisymbriifolium dried plants to a sequential extraction in the solvent sequence of dichloromethane, acetone, ethanol and water, and to na aqueous extraction of the fresh and dried plants. Analyses with the extracts at several concentrations were used to assess mobility and mortality on P. goodeyi. Results showed that the water extract and aqueous extracts from both plants at a concentration of 10 mg/mL affected nematode mobility and caused mortality but the acetone extract from S. nigrum was the most efficient, causing 100% mortality whereas dichloromethane had no effect on P. goodeyi. Determination of the lipophilic and phenolic compounds present in the two most effective Solanum extracts (acetone and water) and in dichloromethane extract revealed that some of these compounds had nematicidal activity. S. nigrum acetone extract (10 mg/mL) was used to find out the nematicidal potential following the effect at gene expression level and nematode behaviour. Genes coding for calreticulin and beta-1,4- endoglucanase related to parasitism and translocon-associated protein putatively connected to stress were obtained and its relative expression assessed in nematodes exposed to the extract. Results revealed that expression of Pg-CRT decreased showing to influence the infection, Pg-ENG remained steady and Pg-TRAPδ was induced over time exposure. Biological assays showed that P. goodeyi mobility and ability to infect the banana roots were affected as a decrease in the number of nematodes that reached the roots was obtained with the increased exposure time to the extract being implicated in the infection success. The information obtained from this thesis showed that S. nigrum has potential to be used for the development of a new control strategy against plant-parasitic nematodes.
Resumo:
The external morphology of seeds and post-germination developmental stages of Angelonia salicariifolia Bonpl. (Scrophulariaceae) were investigated using scanning electron microscopy. Some structural features of the seed exotesta and seedling in Angelonia are presented for the first time and are of potential taxonomic value for this neotropical genus. The seeds are very small (0.9-1.7 mm long and 0.5-0.9 mm wide), ovate, with a reticulate-crested exotesta, reticules arranged uniformly in longitudinal rows, with a high density of microcilia-like projections on the cell wall of the reticule base and on the edge of the crests. The hilum is located beside the micropyle at the narrow end of the seed. Germination is epigeal. During germination the radicle develops, followed by elongation of the hypocotyl and primary root. At this stage dense root hairs develop on the lower part of the hypocotyl. The apical bud-located between the cotyledons-begins to develop after the cotyledons have unfolded. The cotyledons are equal in size, sessile and ovate. The seedlings have two types of trichomes, one characteristic of the cotyledons and first pair of leaves (glandular, sessile, four-celled head with quadrangular shape) and the other characteristic of the hypocotyl and epicotyl (stalked, erect, elongate and three-celled with dome-shaped unicellular head). (C) 2001 Annals of Botany Company.
Resumo:
Com a procura cada vez maior de alternativas por parte dos produtores rurais e de frutas exóticas pelos consumidores, o mercado de frutíferas tem crescido consideravelmente. Neste contexto, a pitaya vem sendo procurada não apenas pelo exotismo de sua aparência, como também por suas características organoléticas. O presente trabalho foi realizado objetivando avaliar a influência do volume de substrato no desenvolvimento de mudas de pitaya vermelha, utilizando-se bandejas de poliestireno expandido com diferentes volumes de células: 10, 15, 30 e 65 mL. As avaliações, realizadas aos 90 dias, foram quanto: porcentagem de sobrevivência; ao número e altura dos cladódios (cm), ao comprimento da maior raiz (cm); às massas fresca e seca dos cladódios e das raízes (gramas). O delineamento experimental foi inteiramente casualizado. Os dados de porcentagem de sobrevivência foram transformados em arc sen para fins de análise estatística e as médias comparadas pelo teste de Tukey, a 5% de probabilidade. A sobrevivência e o desenvolvimento vegetativo das mudas de pitaya vermelha através de sementes foram diretamente proporcionais ao volume de substrato usado no experimento. Para formação de mudas de pitaya vermelha através de sementes é recomendado o uso de containeres com capacidade de 65 mL.
Resumo:
The objectives of the study were to assess changes in fine root anisotropy and specific root lengths throughout the development of Eucalyptus grandis ( W. Hill ex Maiden) plantations and to establish a predictive model of root length density (RLD) from root intercept counts on trench walls. Fine root densities (<1 mm in diameter) were studied in 6-, 12-, 22-, 28-, 54-, 68- and 72-month-old E. grandis plantations established on deep Ferralsols in southern Brazil. Fine root intercepts were counted on 3 faces of 90-198 soil cubes (1 dm(3) in volume) in each stand and fine root lengths (L) were measured inside 576 soil cubes, sampled between the depths of 10 cm and 290 cm. The number of fine root intercepts was counted on one vertical face perpendicular to the planting row (N(t)), one vertical face parallel to the planting row (N(l)) and one horizontal face (N(h)), for each soil cube sampled. An overall isotropy of fine roots was shown by paired Student's t-tests between the numbers of fine roots intersecting each face of soil cubes at most stand ages and soil depths. Specific root lengths decreased with stand age in the upper soil layers and tended to increase in deep soil layers at the end of the rotation. A linear regression established between N(t) and L for all the soil cubes sampled accounted for 36% of the variability of L. Such a regression computed for mean Nt and L values at each sampling depth and stand age explained only 55% of the variability, as a result of large differences in the relationship between L and Nt depending on stand productivity. The equation RLD=1.89*LAI*N(t), where LAI was the stand leaf area index (m(2) m(-2)) and Nt was expressed as the number of root intercepts per cm(2), made it possible to predict accurately (R(2)=0.84) and without bias the mean RLDs (cm cm(-3)) per depth in each stand, for the whole data set of 576 soil cubes sampled between 2 years of age and the end of the rotation.
Resumo:
Os fertilizantes silicatados tem sido cada vez mais usados na agricultura devido a inúmeros benefícios, tais como correção da acidez de solos tropicais e efeitos positivos no desenvolvimento de gramíneas. A disponibilidade de nutrientes e a nutrição de plantas desempenham papel importante na produção de sementes e podem influenciar a qualidade fisiológica de sementes de aveia-branca (Avena sativa L.). Avaliou-se a germinação de sementes e o desenvolvimento de plântulas de aveia-branca em função da adubação com silício e fósforo. O delineamento experimental foi inteiramente casualizado, em esquema fatorial 2 x 4, com seis repetições. Os tratamentos consistiram de 20 e 200 mg dm-3 de P2O5, aplicados na forma de superfosfato triplo, combinados com 0, 150, 300 e 450 mg dm-3 de Si na forma de silicato de potássio. O experimento foi realizado em casa de vegetação, conduzindo-se sete plantas por vaso, com capacidade para 15 L de terra. As panículas foram colhidas e debulhadas manualmente e, as sementes, armazenadas em sacos de papel em condições normais de ambiente. As sementes foram avaliadas quanto ao teor de água, massa de sementes, germinação, condutividade elétrica, comprimento e massa da matéria seca de plântulas. Sementes de aveia-branca com qualidade superior são produzidas com 20 mg dm-3 de P2O5, independente da dose de Si. Sementes com maior germinação e vigor são obtidas com 300 e 450 mg dm-3 de K2SiO3, respectivamente. Os comprimentos da raiz e total das plântulas foram inferiores nas doses de Si até 300 kg ha-1, porém a dose de fósforo somente afetou o desenvolvimento das plântulas de maneira distinta quando aplicada junto com a maior dose de silício.