968 resultados para rolling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the effects of kinematic and geometric asymmetries in rolling during multi-pass processing of IF steel are examined. The theoretical investigation by final element simulations and experimental investigations by means of electron-backscatter diffraction analysis and tensile tests suggest that asymmetric rolling increases the total imposed strain compared to symmetric rolling, and largely re-distributes the strain components due to additional shear. This enhances the intensity of grain refinement, strengthens and tilts crystallographic orientations, and increases mechanical strength. The effect is highest in the asymmetric rolling with differential roll diameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IF steel sheets were processed by conventional symmetric and asymmetric rolling (ASR) at ambient temperature. The asymmetry was introduced in a geometric way using differential roll diameters with a number of different ratios. The material strength was measured by tensile testing and the microstructure was analyzed by optical and transmission electron microscopy as well as electron backscatter diffraction (EBSD) analysis. Texture was also successfully measured by EBSD using large surface areas. Finite element (FE) simulations were carried out for multiple passes to obtain the strain distribution after rolling. From the FE results, the velocity gradient along selected flow lines was extracted and the evolution of the texture was simulated using polycrystal plasticity modeling. The best mechanical properties were obtained after ASR using a roll diameter ratio of 2. The textures appeared to be tilted up to 12 deg around the transverse direction, which were simulated with the FE-combined polycrystal plasticity modeling in good agreement with measurements. The simulation work revealed that the shear component introduced by ASR was about the same magnitude as the normal component of the rolling strain tensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sheets of precipitate hardenable 2024 aluminium have been processed by rolling at liquid nitrogen temperature in order to refine the microstructure. A number of different aging/heat treating procedures have been utilised that have resulted in significantly different mechanical properties. The cryo-rolled material was heat treated at 150 °C for varying times and the resulting mechanical properties evaluated as a function of this holding time. The resulting properties were found to be strongly influenced by precipitates that formed either during the aging step, rolling process or the subsequent heat treatment. The formability of the cryo-rolled and heat treated material has been investigated using a limiting dome height test (Erichsen cupping test).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of annealing on the microstructure, texture, tensile properties, and R value evolution of an IF steel sheet after room-temperature symmetric and asymmetric rolling were examined. Simulations were carried out to obtain R values from the experimental textures using the viscoplastic self-consistent polycrystal plasticity model. The investigation revealed the variations in the textures due to annealing and symmetric/asymmetric rolling and showed that the R values correlate strongly with the evolution of the texture. An optimum heat treatment for the balance of strength, ductility, and deep drawability was found to be at 873 K (600 _C) for 30 minutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR). The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT) based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.