852 resultados para robust estimator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC-AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water-balance-related parameters. Temperature-dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon 'dieback' results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long-term investments are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the estimation of population size from onesource capture–recapture data, that is, a list in which individuals can potentially be found repeatedly and where the question is how many individuals are missed by the list. As a typical example, we provide data from a drug user study in Bangkok from 2001 where the list consists of drug users who repeatedly contact treatment institutions. Drug users with 1, 2, 3, . . . contacts occur, but drug users with zero contacts are not present, requiring the size of this group to be estimated. Statistically, these data can be considered as stemming from a zero-truncated count distribution.We revisit an estimator for the population size suggested by Zelterman that is known to be robust under potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a locally truncated Poisson likelihood which is equivalent to a binomial likelihood. This result allows the extension of the Zelterman estimator by means of logistic regression to include observed heterogeneity in the form of covariates. We also review an estimator proposed by Chao and explain why we are not able to obtain similar results for this estimator. The Zelterman estimator is applied in two case studies, the first a drug user study from Bangkok, the second an illegal immigrant study in the Netherlands. Our results suggest the new estimator should be used, in particular, if substantial unobserved heterogeneity is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel method for scoring the accuracy of protein binding site predictions – the Binding-site Distance Test (BDT) score. Recently, the Matthews Correlation Coefficient (MCC) has been used to evaluate binding site predictions, both by developers of new methods and by the assessors for the community wide prediction experiment – CASP8. Whilst being a rigorous scoring method, the MCC does not take into account the actual 3D location of the predicted residues from the observed binding site. Thus, an incorrectly predicted site that is nevertheless close to the observed binding site will obtain an identical score to the same number of nonbinding residues predicted at random. The MCC is somewhat affected by the subjectivity of determining observed binding residues and the ambiguity of choosing distance cutoffs. By contrast the BDT method produces continuous scores ranging between 0 and 1, relating to the distance between the predicted and observed residues. Residues predicted close to the binding site will score higher than those more distant, providing a better reflection of the true accuracy of predictions. The CASP8 function predictions were evaluated using both the MCC and BDT methods and the scores were compared. The BDT was found to strongly correlate with the MCC scores whilst also being less susceptible to the subjectivity of defining binding residues. We therefore suggest that this new simple score is a potentially more robust method for future evaluations of protein-ligand binding site predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the case of a multicenter trial in which the center specific sample sizes are potentially small. Under homogeneity, the conventional procedure is to pool information using a weighted estimator where the weights used are inverse estimated center-specific variances. Whereas this procedure is efficient for conventional asymptotics (e. g. center-specific sample sizes become large, number of center fixed), it is commonly believed that the efficiency of this estimator holds true also for meta-analytic asymptotics (e.g. center-specific sample size bounded, potentially small, and number of centers large). In this contribution we demonstrate that this estimator fails to be efficient. In fact, it shows a persistent bias with increasing number of centers showing that it isnot meta-consistent. In addition, we show that the Cochran and Mantel-Haenszel weighted estimators are meta-consistent and, in more generality, provide conditions on the weights such that the associated weighted estimator is meta-consistent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The jackknife method is often used for variance estimation in sample surveys but has only been developed for a limited class of sampling designs.We propose a jackknife variance estimator which is defined for any without-replacement unequal probability sampling design. We demonstrate design consistency of this estimator for a broad class of point estimators. A Monte Carlo study shows how the proposed estimator may improve on existing estimators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe and evaluate a new estimator of the effective population size (N-e), a critical parameter in evolutionary and conservation biology. This new "SummStat" N-e. estimator is based upon the use of summary statistics in an approximate Bayesian computation framework to infer N-e. Simulations of a Wright-Fisher population with known N-e show that the SummStat estimator is useful across a realistic range of individuals and loci sampled, generations between samples, and N-e values. We also address the paucity of information about the relative performance of N-e estimators by comparing the SUMMStat estimator to two recently developed likelihood-based estimators and a traditional moment-based estimator. The SummStat estimator is the least biased of the four estimators compared. In 32 of 36 parameter combinations investigated rising initial allele frequencies drawn from a Dirichlet distribution, it has the lowest bias. The relative mean square error (RMSE) of the SummStat estimator was generally intermediate to the others. All of the estimators had RMSE > 1 when small samples (n = 20, five loci) were collected a generation apart. In contrast, when samples were separated by three or more generations and Ne less than or equal to 50, the SummStat and likelihood-based estimators all had greatly reduced RMSE. Under the conditions simulated, SummStat confidence intervals were more conservative than the likelihood-based estimators and more likely to include true N-e. The greatest strength of the SummStat estimator is its flexible structure. This flexibility allows it to incorporate any, potentially informative summary statistic from Population genetic data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we list some new orthogonal main effects plans for three-level designs for 4, 5 and 6 factors in IS runs and compare them with designs obtained from the existing L-18 orthogonal array. We show that these new designs have better projection properties and can provide better parameter estimates for a range of possible models. Additionally, we study designs in other smaller run-sizes when there are insufficient resources to perform an 18-run experiment. Plans for three-level designs for 4, 5 and 6 factors in 13 to 17 runs axe given. We show that the best designs here are efficient and deserve strong consideration in many practical situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness, including three algorithms using combined A- or D-optimality or PRESS statistic (Predicted REsidual Sum of Squares) with regularised orthogonal least squares algorithm respectively. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalisation scheme in orthogonal least squares or regularised orthogonal least squares has been extended such that the new algorithms are computationally efficient. A numerical example is included to demonstrate effectiveness of the algorithms. Copyright (C) 2003 IFAC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the G(A)(0) distribution is assumed as the universal model for amplitude Synthetic Aperture (SAR) imagery data under the Multiplicative Model. The observed data, therefore, is assumed to obey a G(A)(0) (alpha; gamma, n) law, where the parameter n is related to the speckle noise, and (alpha, gamma) are related to the ground truth, giving information about the background. Therefore, maps generated by the estimation of (alpha, gamma) in each coordinate can be used as the input for classification methods. Maximum likelihood estimators are derived and used to form estimated parameter maps. This estimation can be hampered by the presence of corner reflectors, man-made objects used to calibrate SAR images that produce large return values. In order to alleviate this contamination, robust (M) estimators are also derived for the universal model. Gaussian Maximum Likelihood classification is used to obtain maps using hard-to-deal-with simulated data, and the superiority of robust estimation is quantitatively assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel sparse kernel density estimator is derived based on a regression approach, which selects a very small subset of significant kernels by means of the D-optimality experimental design criterion using an orthogonal forward selection procedure. The weights of the resulting sparse kernel model are calculated using the multiplicative nonnegative quadratic programming algorithm. The proposed method is computationally attractive, in comparison with many existing kernel density estimation algorithms. Our numerical results also show that the proposed method compares favourably with other existing methods, in terms of both test accuracy and model sparsity, for constructing kernel density estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several pixel-based people counting methods have been developed over the years. Among these the product of scale-weighted pixel sums and a linear correlation coefficient is a popular people counting approach. However most approaches have paid little attention to resolving the true background and instead take all foreground pixels into account. With large crowds moving at varying speeds and with the presence of other moving objects such as vehicles this approach is prone to problems. In this paper we present a method which concentrates on determining the true-foreground, i.e. human-image pixels only. To do this we have proposed, implemented and comparatively evaluated a human detection layer to make people counting more robust in the presence of noise and lack of empty background sequences. We show the effect of combining human detection with a pixel-map based algorithm to i) count only human-classified pixels and ii) prevent foreground pixels belonging to humans from being absorbed into the background model. We evaluate the performance of this approach on the PETS 2009 dataset using various configurations of the proposed methods. Our evaluation demonstrates that the basic benchmark method we implemented can achieve an accuracy of up to 87% on sequence ¿S1.L1 13-57 View 001¿ and our proposed approach can achieve up to 82% on sequence ¿S1.L3 14-33 View 001¿ where the crowd stops and the benchmark accuracy falls to 64%.