939 resultados para rice (Oryza sativa L.) cultivars


Relevância:

100.00% 100.00%

Publicador:

Resumo:

低温威胁水稻的生产,其中苗期和生殖阶段对寒害是最敏感的时期。在苗期,阶段性冷害使水稻幼苗生长延迟,甚至造成烂秧现象;在生殖阶段,无法预测的突然降温会导致水稻花粉不育,并致使水稻大幅减产。因此,对水稻逆境胁迫调控的分子机制的深入研究在理论和实践上具有重要的意义。本研究从东乡野生稻、栽培稻及其杂交后代的低温芯片中筛选对低温响应基因的分析着手,对其中一个受低温诱导上调的基因OsMYB3R-2 作进一步研究。生物信息学的分析表明OsMYB3R-2 编码一个R1R2R3 MYB 蛋白,利用基因枪瞬时转化法、酵母GAL4 系统和电泳迁移率变动分析发现OsMYB3R-2 蛋白能够定位在细胞核中、具有转录激活和DNA 结合特性,表现为MYB 转录因子的典型特征。 超表达OsMYB3R-2 的转基因水稻呈现幼苗的矮化和生长相对滞后的表型,对低温胁迫具有耐受性。盐抑制水稻种子的萌发,与野生型和反义的株系相比,OsMYB3R-2 超表达株系的萌发对盐敏感,表现为萌发过程及萌发之后幼苗的生长更加滞后。而OsMYB3R-2 转基因株系对干旱处理敏感。为了进一步寻找OsMYB3R-2 蛋白的靶序列及其调控的靶基因,我们利用电泳迁移率变动分析发现OsMYB3R-2 能够与有丝分裂特异的激活子(mitosis-specific activator)元件特异结合。在低温条件下,OsMYB3R-2 超表达能够激活水稻G2/M 期特异基因的表达,主要包括OsCycB1;1、OsCycB2;1、OsCycB2;2 和OsCDC20.1 等。另一方面,OsMYB3R-2 超表达能够增加根尖细胞的有丝分裂指数,这进一步说明OsMYB3R-2 参与了水稻细胞周期调控。EMSA、RT-PCR 和流式细胞仪分析的结果表明OsMYB3R-2 通过激活其靶基因OsCycB1;1 的表达参与水稻对低温胁迫的调控,该过程由细胞周期介导。 为了研究OsMYB3R-2 与水稻DREB/CBF 途径的关系,我们分析了转基因水稻中DREB/CBF 类基因及其可能调控的下游基因与OsMYB3R-2 的关系,RT-PCR 的结果表明超表达转基因植物中DREB 表达未见明显变化,而其下游基因OsCPT1 在低温条件下被激活表达。同时,转基因植物在低温条件下脯氨酸水平显著提高。这说明OsMYB3R-2 可能在水稻DREB/CBF 途径的下游参与调控。 总之,OsMYB3R-2 基因的超表达赋予转基因水稻在苗期对低温胁迫具有耐受性,并呈现矮化和生长滞后的表型。OsMYB3R-2 蛋白行使R1R2R3 MYB 转录因子的功能,在体外能够结合OsCycB1;1 和OsKNOLLE2 基因启动子中有丝分裂特异的激活子元件,在低温条件下激活了G2/M 期特异基因的表达,这些基因包括OsCycB1;1、OsCycB2;1、OsCycB2;2 和OsCDC20.1。低温条件下,在OsMYB3R-2 转基因超表达株系中OsCPT1 基因的转录被激活,细胞的游离脯氨酸的含量也显著增高。这些结果都表明OsMYB3R-2 基因在水稻的冷胁迫信号途径中起重要的作用,该过程受细胞周期及DREB/CBF 途径介导。 我们的实验结果暗示水稻对低温的耐受是通过分生组织细胞周期调控完成的,这个过程由OsMYB3R-2 等关键基因控制。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

植物通过异戊二烯代谢途径合成多种具有生物活性和功能的三萜及甾醇类化合物,它们在调节植物生长发育、维持膜的完整和功能、抵抗病原微生物侵染中发挥着重要的作用。2,3-氧化鲨烯为三萜和甾醇合成途径的分枝点,参与这一关键步骤的酶被通称为2,3-氧化鲨烯环化酶(OSCs)。本研究系统分了水稻基因组中全部11个OSC基因序列,发现其中四个可能为假基因。亚种间非同义替换率Ka和同义替换率Ks的比值(Ka/Ks)以及进化树的分析表明OsOSC8是单子叶植物特有的功能保守基因,而OsOSC9在水稻两个亚种间发生了功能快速进化,这种快速进化的基因往往参与植物和病原菌相互作用的代谢途径。 根据基因结构、表达谱以及与其它植物已知功能的OSC酶氨基酸序列的比对推测OsOSC3可能具有环阿屯醇合成酶的功能,参与植物甾醇的合成,而OsOSC7、OsOSC10和OsOSC11可能具有β-香树素合成酶的功能,其余OSCs可能参与合成其它三萜化合物。为了进一步分析和验证OSCs酶的功能,将水稻7个OSC基因的开放阅读框(ORF)构建到酵母表达载体并在pichia酵母中表达,发现仅有OsOSC9和OsOSC12能够将酵母内源的2,3-氧化鲨烯分别环化为四环三萜化合物Parkeol植物中稀有的五环三萜化合物Isoarborinol目前还未在其它植物中发现参与这两种三萜化合物的基因。另外,水稻所有的OSC基因均不能互补酵母羊毛甾醇缺陷型菌株,表明水稻OSCs不具有合成羊毛甾醇的功能。 RNAi沉默以及启动子融合GUS的表达实验发现OsOSC8可能参与花粉的发育,该基因的下调影响水稻的育性,暗示水稻中存在一个可能与雄性不育有关的三萜代谢途径。水稻其它OSC基因RNAi植株可能在逆境环境和病原菌侵染下才会显现出表型。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

同源四倍体水稻(2N=4X=48,AAAA)是由二倍体水稻(2N=2X=24,AA)通过秋水仙素诱导染色体加倍后得到的新品系,具有优良的抗病性以及较高的蛋白质含量。因此,在四倍体水平上挖掘水稻的增产潜力成为水稻育种的新手段。同源四倍体水稻具有很强的遗传可塑性和很弱的遗传保守性,利用其作为水稻远缘杂交的桥梁,从野生物种中不断地引进有益的基因,这将有助于杂交水稻的多代利用和固定水稻的杂种优势。但是迄今为止,还没有关于同源四倍体水稻遗传多样性,遗传背景的报道。目前世界关于同源四倍体水稻的研究主要集中在中国,主要研究方向为培育、筛选结实正常的亲本材料,配置和筛选结实率正常或接近正常的组合。经过几十年研究,虽然在材料构建,细胞学研究等方面取得了较大进展,但同样由于结实率低的瓶颈问题未解决,而使多倍体水稻育种未能取得实质性进展。而近年来一些关于同源四倍体水稻低结实率机理的细胞学研究也由于缺乏统计学数据而缺乏说明性。本文用SSR标记,对选取的36个结实率正常同源四倍体水稻三系亲本和14个来源二倍体亲本,分析他们的遗传差异和群体遗传结构。本文还利用我们培育的高、低结实率的同源四倍体水稻恢复系、优良保持系和杂种F1及二倍体对照为材料,进行系统深入的细胞遗传学研究,进一步探讨同源四倍体水稻有性传递后代的发育过程,探索分裂期染色体行为特征与遗传性状稳定性的关系,为进一步选育多倍体水稻品种并将其应用于生产提供理论依据。同源四倍体水稻突变株D4063-1直链淀粉含量比来源二倍体明恢63下降一半,即其直链淀粉含量为5.23%,为研究其直链淀粉含量下降的原因,本文还根据普通水稻Wx基因设计引物,扩增测序获得了D4063-1Wx基因的全序列,与已报道Wx基因进行比对分析,并根据D4063-1和籼稻、粳稻的序列差异并根据D4063-1在该片段上的特征序列位点设计了用于识别D4063-1的寡核苷酸片段,为快速、准确的鉴别低直链淀粉的D4063-1创造了条件。 SSR标记具有基因组分布广泛、数量丰富、多态性高、容易检测、共显性、结果稳定可靠、实验重现性好、操作简单、经济、易于高通量分析等许多优点,被认为是用于遗传多样性、品种鉴定、物种的系统发育、亲缘关系及起源等研究的非常有效的分子标记。本研究选取了中国科学院成都生物所培育的同源四倍体和二倍体水稻亲本,并用36个微卫星标记进行了遗传差异和种群遗传结构分析。在50个品系中,我们观察到较高水平的多态性,每基因等位基因数(Ae)分布于2至6之间(平均值3.028),多态性信息含量(PIC)分布于0.04至0.76之间(平均值0.366);期望杂合度(He)分布于0.04至0.76之间(平均值0.370),Shannon指数(I)分布于0.098至1.613之间(平均值0.649)。同源四倍体品系的等位基因数,期望杂合性和Shannon指数都比二倍体品系高。在供试50个品系中,较多材料均发现Rare基因,根据SSR多态性指数我们构建了同源四倍体和二倍体水稻的核心指纹库。F-统计值表明遗传差异主要存在于同源四倍体品系中(Fst=0.066)。聚类分析结果表明50个品系可以分为4个组。I组包括所有的同源四倍体和二倍体籼稻保持系,以及一个同源四倍体籼稻雄性不育系及其来源二倍体。II组仅包括IR来源的品系。III组比II组和IV组更复杂,包括同源四倍体和二倍体籼稻恢复系品系。IV组包括同源四倍体和二倍体粳稻品系。此外,由于等位基因及配子的遗传差异,同源四倍体与二倍体品系中存在单位点和双位点的遗传差异。分析结果表明,二倍体和四倍体水稻基因库的不同,其中遗传变异可以区分四倍体与二倍体水稻。同源四倍体水稻具有长期而独立的遗传性,我们能够选育并得到与二倍体亲本相比有特殊优良农艺性状的品系。 本研究以高结实率的同源四倍体水稻恢复系DTP-4、D明恢63及优良保持系D46B为材料进行农艺性状及细胞遗传学比较研究。DTP-4、D明恢63及保持系D46B的的染色体组成均为2N=4X=48,花粉母细胞具有较为理想的减数分裂行为,配对染色体的比率在99%以上,这与理论染色体组构成相符。DTP-4和D明恢63PMC减数分裂各个时期单价体和三价体的比例都非常低,而在MI, PMC观察到较多的二价体和四价体且四价体多以环状形式出现,其最大频率的染色体构型分别为12II 6IV和10II 7IV。恢复系DTP-4和D明恢63在MI四价体频率分别为2.00/PMC和2.26/PMC,而保持系D46B在MI四价体频率为6.00/PMC,极显著地高于恢复系品系,表明保持系D46B具有更好的染色体配对性质;AI保持系D46B的染色体滞后频率为10.62%,远低于恢复系材料DTP-4和D明恢63的19.44%和23.14%,接近二倍体对照明恢63的7.30%水平;TI保持系D46B具有比恢复系更低频率的微核数。而在TII,D46B的正常四分小孢子比率不但高于恢复系品系甚至高于二倍体对照。对高低结实率的同源四倍体水稻恢复系和杂种F1代的花粉育性,结实率和细胞遗传学行为进行了比较研究。DTP-4, D明恢63, D46A´DTP-4和D46A´D明恢63的花粉育性和结实率比D什香和D46A´D什香显著提高。减数分裂分析的结果表明,DTP-4,D明恢63,D什香,D46A´DTP-4,D46A´D明恢63和D46A´D什香其减数分裂染色体构型分别为:0.05I +19.96 II (9.89棒状+10.07环状) +0.01III + 2.20 IV, 0.11I +19.17 II (8.90 棒状+10.37 环状) +0.09III + 2.26 IV + 0.01 VI, 1.33I +9.46 II (4.50 棒状+4.96 环状) +0.44III + 6.02 IV + 0.09VI + 0.09 VIII, 0.02I +14.36 II (6.44 棒状+7.91 环状) +0.01III + 4.80IV + 0.01VIII, 0.06 I +17.67 II (11.01 棒状+6.67 环状) +0.06 III + 3.10 IV + 0.01 VI and 1.11 I +11.31 II (5.80 棒状+5.51 环状) +0.41 III + 5.63 IV+0.03VI+0.03VIII。在同源四倍体水稻恢复系和杂种F1代材料中,最常见的染色体构型为16II +4IV和12II +6IV。在减数分裂过程中,结实率较高的材料染色体异常现象较少而结实率较低的材料染色体异常现象较严重。在杂种F1代中,二价体的比例要低于其相应的恢复系亲本,同样的,单价体,三价体和多价体的比例相比其恢复系亲本也偏低。然而,在减数分裂MI,杂种F1代中四价体的比例要显著高于其恢复系亲本。在中期I,每细胞单价体的比例和花粉育性呈现出极高的负相关(-0.996),当单价体数目升高时,花粉育性下降。其次是每细胞三价体的比例(-0.987),之后则是每细胞多价体的比例与花粉育性的负相关(-0.948)。但是统计分析表明,二价体和四价体的比例对花粉育性和结实率没有显著影响。这一结果表明出了花粉育性和细胞减数分裂行为的相关性,同源四倍体的减数分裂行为为筛选高结实率的同源四倍体种系提供了理论依据。 突变体是遗传学研究的基本材料。利用突变体克隆水稻基因,并进而研究基因的生物学功能是水稻功能基因组学的重要研究内容。本课题组在多年的四倍体水稻育种研究中已获得多个低直链淀粉含量突变体,其中一些突变体在直链淀粉含量下降的同时,胚乳外观也发生了显著改变,呈半透明或不透明。同源四倍体水稻突变株D4063-1直链淀粉含量比来源二倍体明恢63下降一半,即其直链淀粉含量为5.23%。为研究其直链淀粉含量下降的原因,我们根据普通水稻Wx基因设计引物,扩增测序获得了D4063-1Wx基因的全序列,与已报道Wx基因进行比对分析;同源四倍体水稻D4063-1Wx基因最显著变化为在外显子序列中发生了碱基缺失,导致移码突变,在第9外显子终止密码子提前出现。D4063-1Wx基因碱基位点的变化还导致了其序列上的酶切位点的变化,对常用限制性内切酶位点分析分析结果表明同源四倍体水稻相对于籼稻和粳稻多了2个sph1酶切位点,相对于粳稻减少了6个Acc1,增加了4个Xba1,1个Xho1,1个Pst1和1个Sal1酶切位点。聚类分析表明D4063-1Wx基因序列与籼稻亲源关系较近,由此推测D4063-1Wx基因来源于籼稻的Wxa基因型。另外,根据D4063-1Wx基因的碱基差异,我们推测D4063-1Wx基因外显子碱基变化导致的RNA加工障碍是其直链淀粉降低的主要原因,并可能与其米饭较软等品质相关。本文还根据D4063-1和籼稻、粳稻的序列差异并根据D4063-1在该片段上的特征序列位点设计了用于识别D4063-1的寡核苷酸片段,并作为PCR反应的引物命名为AUT4063-1,将该引物与我们设计的扩增普通籼稻、粳稻的Wx基因引物F5配合使用建立了识别D4063-1的显性和共显性两种检测方式的分子标记,为快速、准确的鉴别低直链淀粉的D4063-1创造了条件。 研究同源四倍体水稻基因组的遗传差异,探索同源四倍体水稻的遗传规律,研究分裂期染色体行为特征与遗传性状稳定性的关系,旨在揭示四倍体水稻中同源染色体配对能力的遗传差异,为进一步选育多倍体水稻品种并将其应用于生产提供理论依据。 Autotetraploid rice (2N=4X=48, AAAA) is a new germplasm developed from diploid rice (2N=2X=24, AA) through chromosomes doubling with colchicines and is an excellent resource for desirable resistance genes to the pathogens and high protein content. Therefore, heterosis utilization on polyploidy is becoming a new strategy in rice breeding. At present, the main research on autotetraploid rice centralizes in China. Breeding effort has been made to improve autotetraploid rice genetically, however, the progresses are limited due to higher degree of divergence between hybrid sterility and polygenic nature. But to date, almost nothing is reported about the genetic diversity, original and genetic background of autotetraploid rice. Despite several reports on cytological analysis of the mechanisms of low seed set in autotetraploid rice still the results are inconclusive due to lack the statistical evaluation. Therefore, the study on the mechanisms of low seed set in autotetraploid is a priority for rice breeding. Microsatellites or simple sequence repeats (SSRs) are the widely used marker for estimating genetic diversity in many species, including wild, weedy, and cultivated rice. In our research, genetic diversity and population genetic structure of autotetraploid and diploid populations collected from Chengdu Institute of Biology, Chinese Academy of Sciences were studied based on 36 microsatellite loci. For the total of 50 varieties, a moderate to high level of genetic diversity was observed at population levels with the number of alleles per locus (Ae) ranging from 2 to 6 (mean 3.028) and PIC ranging from 0.04 to 0.76 (mean 0.366). The expected heterozygosity (He) varied from 0.04 to 0.76 with the mean of 0.370 and Shannon’s index (I) ranging from 0.098 to 1.613 (mean 0.649). The autotetraploid populations showed a slightly higher level of effective alleles, the expected heterozygosity and Shannon’s index than that of diploid populations. Rare alleles were observed at most of the SSR loci in one or more of the 50 accessions and core fingerprint database of the autotetraploid and diploid rice was constructed. The F-statistics showed that genetic variability mainly existed among autotetraploid populations rather than among diploid populations (Fst=0.066). Cluster analysis of the 50 accessions showed four major groups. Group I contained all of the autotetraploid and diploid indica maintainer lines and a autotetraploid and its original diploid indica male sterile lines. Groups II contained only original of IR accessions. Group III was more diverse than either group II or IV and comprised of both autotetraploid and diploid indica restoring lines. Group IV included japonica cluster of the autotetraploid and diploid rices. Furthermore, genetic differences at the single-locus and two-locus levels, as well as components due to allelic and gametic differentiation, were revealed between autotetraploid and diploid varieties. This analysis indicated that the gene pools of diploid and autotetraploid rice are somewhat dissimilar, which made a variation that distinguishes autotetraploid from diploid rices. Using this variation, we can breed new autotetraploid varieties with some new important agricultural characters but the diploid rice has not. Cytogenetic characteristics in restorer lines DTP-4, DMinghui63 and maintainer line D46B of autotetraploid rices were studied. DTP-4, DMinghui63 and D46B showed the advantage of high seed set and biological yield. The meiotic chromosome behavior was slightly irregular in DTP-4, DMinghui63 and D46B. We observed less univalent, trivalent and multivalent at MI, but more bivalent and quadrivalent were observed. The most frequent chromosome configurations were 12II 6IVand 10II 7IV in restorer and maintainer lines, respectively. The quadrivalent frequency of DTP-4 and Dminghui63 at metaphase(MI) was respectively 2.00/PMC and 2.26/PMC. However that frequency of D46B was 6.00/PMC, which was greatly significantly higher than DTP-4 and Dminghui63. That indicates the maintainer D46B has better chromosome pairing capability in metaphase (MI). The frequency of lagging chromosomes of the maintainer D46B at anaphaseI (AI) was 10.62%, which was significantly lower than that of DTP-4(19.44%) and Dminghui63(23.14%) and nearly reaching the level of diploid CK(7.30%). In telophaseI (TI) maintainer D46B showed lower frequency of microkernel at TI and lower frequency of abnormal spores at telophaseII(TII). We also studied pollen fertility, seed set and cytogenetic characteristics of restorer lines and F1 hybrids of autotetraploid rice. DTP-4, DMinghui63, D46A´DTP-4 and D46A´DMinghui63 showed significantly higher pollen fertility and seed set than DShixiang and D46A´DShixiang. Pairing configurations in PMC of DTP-4, DMinghui63, DShixiang, D46A´DTP-4, D46A´DMinghui63 and D46A´DShixiang were 0.05 I+19.96 II (9.89 rod+10.07 ring)+0.01 III+2.20 IV, 0.11 I+19.17 II (8.90 rod+10.37 ring)+0.09 III+2.26 IV+0.01 VI, 1.33 I+9.46 II (4.50 rod+4.96 ring)+0.44 III+6.02 IV+0.09 VI+0.09 VIII, 0.02 I+14.36 II (6.44 rod+7.91 ring)+0.01 III+4.80 IV+0.01V III, 0.06 I+17.67 II (11.01 rod+6.67 ring)+0.06 III+3.10 IV+0.01 VI and 1.11 I+11.31 II (5.80 rod+5.51 ring)+0.41 III+5.63 IV+0.03 VI+0.03 VIII, respectively. Configuration 16 II+4 IV and 12 II+6 IV occurred in the highest frequency among the autotetraploid restorers and hybrids. Meiotic chromosome behaviors were less abnormal in the tetraploids with high seed set than those with low seed set. The hybrids had fewer frequencies of bivalents, univalents, trivalents and multivalents than the restorers, but higher frequency of quatrivalents than the restorers at MI. The frequency of univalents at M1 had the most impact on pollen fertility and seed set, i.e., pollen fertility decreased with the increase of univalents. The secondary impact factors were trivalents and multivalents, and bivalents and quatrivalents had no effect on pollen fertility and seed set. The correlative relationship between pollen fertility and cytogenetic behaviors could be utilized to improve seed set in autotetraploidy breeding. The amylose content of autotetraploid indica mutant Rice D4063-1 dropped by half than diploid Minghui 63, that is, its amylose content of 5.23%.The whole sequence of Waxy gene of D4063-1 is amplified and sequenced. And the discrepancy of bases is found comparing to the reported Waxy gene. The Waxy gene of autotetraploid Rice D4063-1 had a base deletion in exon sequence, which resulted frameshift mutation in exon 9 and termination codon occur early. The mutation of Wx also led to the change of some common restriction endonuclease sites. Results showed compared to indica and japonica, D4063-1 had two adding sph1 sites. Compared to japonica, D4063-1 had six decreasing Acc1, a adding Xho1, Pst1 and Sal1 restriction sites. Phylogeny analysis shows that the DNA sequence of Waxy gene of D4063-1 is closer to Indica, and we suppose that the Waxy gene of D4063-1 is origin from genotype Wxa. In addition, according to the base differences of Wx in D4063-1, we deduce that RNA processing obstacle led by base change of intron is the main cause to low the amylose content, and related to phenotype of its soft rice. Based on analysis of fragments of D4063-1, indica and japonica and according to the special point of the three species, primers as markers-AUT4063-I were designed for distinguishing the D4063-1 from other rice. Combining with primer pair F5, dominant and codominant ways were established for discriminating them., rapid and correct identification of D4063-1 from other rice could be done. The genetic analysis is important to ensure the original of autotetraploid rice, for maintaining the “distinctiveness” of autotetraploid varieties, and to differentiate between the various genetic background of autotetraploid rice. The autotetraploid breeding will benefit from detailed analysis of genetic diversity in the germplasm collections. Further investigation on mechanisms of meiotic stability should benefit polyploid breeding. These findings demonstrated opportunity to improve meiotic abnormalities as well as grain fertilities in autotetraploid rice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

水稻是重要的粮食作物,其产量的增加和品质的改良都是关系国计民生的大事。就我国现阶段的国情而言,水稻产量在现有水平上稳步提升仍是未来十几年甚至几十年农业生产最重要的目标之一。尽管根据“超级杂交水稻育种”的战略设想和水稻育种实践,通过不断地改进育种技术可望在更高的产量水平上进行水稻杂种优势利用,在稻属植物内还具有很大的产量潜力可以挖掘。然而,仅仅从现有的种质基础出发,要更大幅度提高水稻单产,实现“超级杂交稻”的目标也存在一些困难:现有的推广品种是二倍体,尽管种类众多,但是其基因组的来源相对单一;同时,水稻基因组DNA含量也是作物中最少的,基因组内寻求开发潜力有一定困难;水稻作为C3植物,光合利用效率不高也是制约水稻产量提高的因素之一。因此,寻求常规手段以外的技术突破或者方法创新,是实现“超级杂交稻”的目标的迫切需求。本研究利用秋水仙素能抑制细胞分裂中纺锤丝的收缩、使细胞染色体加倍的作用,对水稻幼穗诱导的愈伤组织细胞进行加倍,并分化出再生植株;创制出水稻同源四倍体新的种质材料,在此基础上选育水稻同源四倍体雄性不育三系材料,并实现水稻同源四倍体的三系配套,开展水稻同源四倍体杂种优势利用和四倍体杂交水稻选育研究,建立水稻同源四倍体杂种优势利用的新技术体系。这不仅有助于倍性水平杂种优势的开拓和利用,同时也将为我国新世纪“超级稻”育种研究开辟一条新的技术途径。 水稻幼穗诱导愈伤组织并分化成苗是一项成熟、简单的组织培养技术。本研究以普通二倍体水稻亲本为材料,用秋水仙素进行水稻的多倍体化诱导,创制同源四倍体水稻三系亲本材料并对其进行鉴定。多倍体化以秋水仙素诱导的愈伤组织培养为基础,研究不同秋水仙素浓度梯度和愈伤组织诱导培养基组合对诱导四倍体植株的影响。结果表明在MS+2,4 D 1.0mg/L+ KT0.2mg/L+ IAA0.2mg/L 和500mg/L秋水仙素处理下,水稻愈伤组织染色体加倍(有最高的效率)效果较好,平均加倍频率可达25.26%,其中,材料CDR22和IR26诱导较易成功,加倍频率分别达到75%和26.5%;相对材料94109 1.3%加倍频率和冈46B 10.8%加倍频率,诱导率差异极显著。 对水稻四倍体材料进行了形态学鉴定结果表明,与二倍体水稻对照相比其株高、穗长、花粉育性等主要农艺性状,确定四倍体材料在穗长和千粒重两方面极显著提高,种子的长度和宽度也显著增长。对花粉育性鉴定,确认水稻四倍体不育系材料仍为不育,保持系材料自交和杂交可育,恢复系材料自交和杂交可育。对四倍体材料进行细胞形态、染色体数目等方面进行细胞学鉴定,经核型分析表明水稻四倍体材料具有48条染色体,是二倍体水稻的两倍。水稻四倍体材料根尖分生组织细胞与二倍体的根尖分生组织细胞相比,细胞体积、细胞核和核仁显著增大。四倍体三系材料在细胞有丝分裂中期均可规则排列在赤道板,并能均等地移向两极;后期观察中没有发现染色体分离滞后现象,分裂末期细胞能够形成大小相对均一的子细胞。水稻同源四倍体三系材料细胞分裂未见异常,植株生长发育正常。 从1996年至2006年,针对结实率、有效分蘖、着粒数和穗长等主要农艺性状,通过系谱选育的方法,对培育的同源四倍体水稻亲本材料进行了连续选择和改良,取得较好成效。表现为结实率的改良效果极佳,所有改良材料的平均结实率均呈上升趋势,如D237(29.70%→72.70%)、DTB(19.55%→53.21%)等。有效分蘖总体呈现上升趋势,但在不同的年份,如1998和2002存在较大的负向波动。部分材料改良效果明显,如D19B(5.87→13.50)、D什香 (7.00→12.00)等;同时一些材料如DTB和D明恢63虽然总体略有提高,但在不同的年份波动很大,因此存在较大改良阻力,原因还有待进一步研究。着粒数的改良上升趋势比较显著,除保持系的DTB之外,其余材料的平均着粒数有显著提高。穗长的改良阻力较大,虽然不同材料总体上有所提高,但效果并不显著,并且不同年份有较大负向波动(2001)。此外还对株高、剑叶长等性状也进行了选择,但效果不显著,原因有待进一步提高。同源四倍体材料产量相关性状遗传改良幅度不一致,保持系和恢复系间的遗传改良效果也存在差异。这为同源四倍体水稻的进一步利用打下了良好的基础。 籼稻和粳稻亚种间杂交及杂种优势利用的主要障碍就是其低的结实率。而同源四倍体杂交水稻的研究为提高杂交水稻的杂种优势利用创造了新的途径。本研究通过随机区组设计方案,挑选性状优良的二倍体水稻材料,包括雄性不育系,保持系和恢复系进行秋水仙素诱导加倍,从而获得同源四倍体水稻对应的三系材料。利用选育的优良水稻同源四倍体三系材料,配制7个杂交组合,杂交F1代与其恢复系亲本进行比较,用于计算超亲优势(HB);而杂交F1代与生产上大面积推广的二倍体杂交品种汕优63进行比较,用于计算杂种优势。结果显示,同源四倍体杂交水稻的超亲优势表现为:每株有效穗变化幅度为1.4%至105.9%,总粒数为0.5%至74.3%,每穗实粒数为17.6%至255.7%,结实率为9.6%至130.4%。这些农艺性状的改良使得这7个杂种F1的理论产量的超亲优势高达64.8%至672.7%。小区试验中四倍体杂交水稻组合T461A/T4002和T461A/T4193分别比二倍体对照汕优63提高46.3%和38.3%以上,除一个品种以外所有品种产量均接近或高于汕优63的产量。同源四倍体水稻强大的杂种优势表明,亚种间杂交育性低的问题可通过四倍体化及强化选择来解决。此外,同源四倍体杂交水稻器官的巨大性也是其产量提高的有利因素,水稻同源四倍体三系杂种优势利用研究具有一定的理论价值和商业生产潜力。 Rice is one of the major food crops, the improvement of the production and quality of it is an important thing related to the people's livelihood. On China's current national conditions, steadily increase of the rice yield based on the current level is still one of the most important goals in the next decade or even decades of agricultural production. According to the "super hybrid rice breeding" the strategic and rice breeding practice, improvement of the use of hybrid rice heterosis through continuous improvements in breeding technology is expected to get a higher level of rice yield, there are also a great yield potential can be exploited. However, there are also some difficulties to increase rice yield obviously and implement the goal of "super hybrid rice" based on the existing germplasm: Rice varieties in promotion are diploid, although there are many varieties, but their genome are from a comparatively single source; Meanwhile, the rice genome DNA are the least among the crops, it is difficult to exploit the development potential within the genome; Rice as C3 plants, photosynthetic efficiency is not high, it is one of the factors constraint rice yield. Therefore, seeking technological breakthroughs or innovative methods different from conventional means is the urgent needs to reach the target of "super hybrid rice". Using colchicine inhibit spindle contraction during cell division, double the cell chromosome, we induced callus cells from rice panicle to be doubled, and differentiated regeneration; we created a new autotetraploid rice germplasm material, and on that basis we bred male sterility three line autotetraploid rice materials, and the achieved the three line rice autotetraploid matchmaking, researched in autotetraploid rice heterosis usage and tetraploid hybrid rice breeding, constituted a new technology system of autotetraploid hybrid rice heterosis utilization. This not only helps the tetraploid rice heterosis exploration and use, but also inaugurates a new technical means for China in the new century "super rice" breeding research. We chose ordinary diploid rice as materials, using colchicine to induce the polyploidization, created the autotetraploid rice three-line materials and identified them. The polyploidization was based on the colchicine-induced callus tissue culture, and we experimented different colchicine concentrations and culture mediums to induce tetraploid plants, confirmed that the optimal concentration for inducement was 500 mg/L, the average induce rate was 25.26 %. Among all the materials, CDR22 and IR26 had higher induced rate; in contrary, 94109 and GANG46B had lower induced rate, the difference was significant. Autotetraploid materials was identified of both morphological and cytological, compared plant height, length of pollen sterility, and other major agronomic traits with a diploid rice as the control plant, identified that the autotetraploid materials had very significant advantages in ear length and thousand-grain weight, as well as the size of the seeds. Cytology identification included observation of the cell morphology, the number of chromosomes, and karyotype analysis on the autotetraploid materials confirmed that their chromosome number was 48, twice of the diploid rice. Mitoses in the three lines were common: chromosomes arrayed normally in metaphase and separated balanced into the two poles, chromosome moved without lagging in anaphase and daughter cells normally formed in telophase except one. It has been proved that tetraploid rice has normal meiosis as their diploid relatives, which usually including series of sub-phases as interphase, prophase I (five sub-phases), prophase II, metaphase I, II, anaphase I, II and telophase I, II. However, abnormal phenomena, such as formation of tetravalent, trivalent and univalent, chromosome lagging and so on, which would finally block meiosis. Configurations of chromosome in metaphaseⅠwere versatile in structure and form accept the bivalent. That condition varied in different strain, suggesting more complex paring configurations and more versatile genetic characters in tetraploid rice. All these abnormalities in meiosis contributed to low fertility of gamete and might consequently resulted in low seed setting. Successive selection and improvement on seed set, productive tiller per plant, total grains per panicle, panicle length and so on had been carried out from 1996 to 2006. The raise of seed sets was significant in both restorers and maintainers. Seed sets of some strains were improved more significantly than others, for example D237(29.70%→72.70%)、DTB(19.55%→53.21%)and et al.. Productive tiller per plant was improved to some extant. The tendency of improvement was rising on the whole but changed in some years such as 1998 and 2002. Part of the stains increased greatly, such as D19B(5.87→13.50)、Dshixiang (7.00→12.00) and so on, but some strains including DTB and Dminghui63 only increased little and decreased in some years by unknown reason. Total grains per panicle increased significantly and all strains except DTB increased. Improvement of panicle length termed to be hard. Different strains showed different capacities for improvement and floating existed in different years for example 2001. It has been proved that other agronomical traits including plant length, flag leaf length and so on could be improved but not significantly by selection also. In a word, agronomical traits could be raised by successive selection that is prerequisite for further utility of autotetraploid rice. Poor fertility is the main barrier for utilizing heterosis between the two rice (Oryza stiva L.) sub-species, indica and japonica. Recently, the development of autotetraploid hybrids (2n=4x=48) has been suggested as a new method for increasing heterosis in hybrid rice. Using standard experimental protocols, the elite diploid rice male sterile, maintainer, and restorer lines were colchine-doubled and autotetraploid counterparts were obtained. Seven resulting hybrids were analyzed for heterobeltiosis (HB), where the F1 was compared to the male parent, and the degree of heterosis, where the F1 was compared to the diploid commercial hybrid, Shanyou 63. The HB among the autotetraploid hybrids ranged from 1.4 to 105.9% for the productive panicles per plant, 0.5 to 74.3% for total kernels per panicle, 17.6 to 255.7% for filled kernels per panicle, and 9.6 to 130.4% for seed set. Improvements in these yield components resulted in the HB for kernel yield ranging from 64.8 to 672.7% among the seven hybrids. Hybrids T461A/T4002 and T461A/T4193 yielded 46.3 and 38.3% more, respectively than Shanyou 63, and all other hybrids but one yielded the same or more than Shanyou 63. The high heterosis for yield suggests that hybrid sterility between two rice sub-species may be overcome by using tetraploid lines followed by intensive selection. Also, the gigantic features of the autotetraploid hybrids may establish a plant structure able to support the higher yield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

课题组在不断地创制新的同源四倍体材料的同时,连续多年以提高结实率为目的培育、筛选自交系材料,已获得自交繁殖十二年的高代自交系材料。相对于诱导创制初期,材料表现出的结实率低,同种系单株间的差异较大;高代材料已表现出较显著的结实率提升和较一致的农艺性状表型。 本实验选取课题组多年培育的同源四倍体水稻高代自交系材料,通过形态学、农艺性状和细胞遗传学比较,研究水稻同源四倍体与二倍体之间的异同。结果显示,所有同源四倍体材料的染色体组成均为2N=4X=48,花粉母细胞(PMC)减数分裂行为较正常,99%以上的染色体都能在减数分裂中期I(MI)发生联会、配对,形成四价体和二价体,这与理论染色体组构成相符。在减数分裂过程中,结实率较高的材料染色体异常现象较少而结实率较低的材料染色体异常现象较严重。统计分析表明,二价体和四价体的比例对结实率没有显著影响,但是三价体的数目对结实率有一定影响。这一结果表明了结实率和细胞减数分裂行为可能存在相关性,同源四倍体的减数分裂行为为筛选高结实率的同源四倍体种系提供了依据。 然后,对同源四倍体水稻高代自交系材料进行农艺性状和品质性状的统计与分析。主要针对结实率、每穗实粒数、有效分蘖和穗长等主要农艺性状,以及直链淀粉含量这一重要的品质性状进行统计。将统计结果与1996年诱导加倍的初代材料的数据相对比分析,结果显示所有材料经过多代选育培养,其农艺性状已经有了较显著的提高,同时同源四倍体材料的农艺性状稳定性也有了较显著的提升。如结实率的提高幅度较大,所有材料的平均结实率均显著高于加倍初代,而同种材料不同单株间的结实率差异也显著地减少,变异系数(CV)的平均值由1996年的41.15%减少到了2008年的28.81%。其他重要农艺性状也有不同程度的改良,种内变异系数也相应地降低。此外,实验测量了同源四倍体材料和来源二倍体材料的直链淀粉含量。分析结果显示,部分材料的直链淀粉含量与二倍体亲本产生了较显著的差异,这可能是诱导加倍过程中的遗传变异造成的;同源四倍体材料的种内变异系数(CV)平均值由1996年的6%下降到了2008年的3.88%,显示出在品质性状方面,同源四倍体材料的遗传稳定性也有较显著的增加。同源四倍体材料农艺性状经过多年的选育,表现出一定的提升,同时,经过多年自交纯化,所有材料种系内的性状差异逐渐缩小,说明同源四倍体水稻的遗传稳定性随着自交纯化而增强,这为同源四倍体水稻的进一步选育打下了良好的基础。 最后,通过测量连续两年的自交系材料的遗传多态性,分析材料间遗传差异和种群遗传结构,深入研究连续两代材料间的遗传差异,研究同源四倍体水稻与二倍体材料遗传稳定性之间的差异。实验采用18对SSR微卫星标记对连续两代15个材料,共94份样本进行差异分析。通过扩增条带长度多态性分析,计算不同材料以及同种材料不同世代间的遗传距离,构建同源四倍体和二倍体水稻的分子指纹库,并绘制聚类图。结果显示,同源四倍体和二倍体不同材料间的遗传差异比较大,遗传距离处于0.4757至0.2816之间;而相同品种不同世代材料间的遗传差异较小,但也表现出一定的遗传差异。同种同源四倍体材料不同世代间的遗传差异比二倍体材料更大,两代四倍体材料间遗传距离处于0.1359至0.0485之间;而两代二倍体材料间的遗传距离处于均小于0.0388。结果表明,同源四倍体水稻高代材料具有一定的遗传稳定性,但与来源二倍体材料相比,其世代间的遗传变异性仍然较强。这种结果说明,经过多代的自交纯化培育,同源四倍体水稻材料能够建立起相对稳定的遗传结构,同时,其强于二倍体亲本的变异性有能够为新品种的选育,农艺性状、品质性状的改良提供一定的遗传基础。此外,分析结果表明通过分子标记辅助检验,水稻材料间的遗传多态性能够有效地区分不同的品种,这为水稻品种的分子鉴定提供了一定的依据。 本研究从细胞学鉴定,农艺性状统计分析以及分子标记辅助聚类分析多方面地对同源四倍体水稻高代系进行了研究,对探究同源四倍体水稻的遗传规律,进一步揭示其遗传特性、农艺性状的遗传构成,为进一步选育优质的多倍体水稻提供了一定的理论依据。 This group insists on creating new Autotetraploid Rice (Oryza sativa L.) materials, while improving the seed-setting of them for many years, cultivated and selected the inbred line materials, has obtained the high generation inbred lines after twelve years cultivation. Compared to the early induced materials, which shown the low seed setting, and the large difference between the different plants in the same germ-line; the high generation materials have shown significant improvement in seed setting and more uniform phenotype agronomic traits. The autotetraploid rice high generation inbred lines material, which has been cultivated for more than 12 years, was chose in this experiment. The similarities and differences between autotetraploid and diploid rice was studied through morphological, agronomic and cytogenetic ways. The results showed that all the chromosome of autotetraploid materials are composed of 2N=4X=48, the pollen mother cells (PMC) meiosis behavior is normal, more than 99% chromosomes in metaphase I(MI) were federated and paired to form tetravalents or bivalents, which constitutes a consistent theory of genome. In the meiosis process, the material with a higher seed setting showed less chromosome abnormal than the material whose seed setting is lower. However, statistical analysis showed that the bivalent and tetravalent rate had no significant impact on seed setting, but the number of trivalent had a certain impact on seed setting. The result shows that the seed setting may be related to the meiosis behavior, which provides a basis to cultivate new autotetraploid germ line with high seed setting through the meiotic behavior. Furthermore, the agronomic and quality traits of autotetraploid rice high generation inbred material were statistically analyzed. The statistically analysis was focused on major agronomic traits such as: seed setting, grains per panicle, effective tillers and panicle length, as well as the important quality trait amylose content. The statistic data was compared with the data in 1996, when the first induced generation of autotetraploid material, and the result shows that after a multi-generation breeding, the agronomic traits has been significantly improved in all the materials, while the stability of agronomic traits also significant upgraded. For instant, the seed setting increased significantly, the average seed setting of all materials was significantly higher than the first induced generation, and the differences between different plants in the same species also significantly reduced, the average of the coefficient of variation (CV) was reduced from 41.15% in 1996 to 28.81% in 2008. Other important agronomic traits had improved in different degrees; the coefficient of variation within species is also reduced accordingly. In addition, the amylose content of autotetraploid and diploid materials was measured in this experiment. The results shows that the amylose content of some of the material differed from diploid parents significantly, it may caused by the genetic change during the inducing, autotetraploid materials intra-specific coefficient of variation (CV) average reduced from 6% in 1996 to 3.88% in 2008, shows that this is a significant increase of quality traits stability in autotetraploid rice. Agronomic traits of autotetraploid material shows some improvement after years of breeding, at the same time, after years of purification, all material within the germ-line gradually narrow the differences in traits indicates that autotetraploid rice genetic stability was enhanced, which laid a good foundation for the further autotetraploid rice breeding. Finally, this experiment studied the genetic differences between materials of two generations and researched the difference of genetic stability between diploid and autotetraploid rice materials through investigating the genetic polymorphism, genetic differences between materials and population genetic structure of inbred line materials of two consecutive years.18 pairs of SSR microsatellite markers for 15 materials of two generations were used in this experiment, and the total of 94 samples were analyzed. Through the amplification length polymorphism analysis of different materials and materials in different generations, the genetic distance between materials and generations was analyzed, a diploid and autotetraploid rice molecular fingerprint database and map rendering cluster were constructed. The result shows that the genetic distance is between 0.4757 to 0.2816 among different autotetraploid and diploid materials; the genetic distance between different generations of same species was less, but also shows a certain degree of genetic differences. The inter-generational genetic differences of autotetraploid materials were greater than of the diploid materials, which are 0.1359 to 0.0485 as the genetic distance; comparing with the 0.0388 of diploid materials. The result shows that high generation inbred autotetraploid rice material has a certain genetic stability, but the genetic variation between generations is still strong comparing with the source diploid materials. It indicates that, after many generations of purification cultivation, autotetraploid rice materials established a relatively stable genetic structure, at the same time, stronger variability than its diploid parents are useful in the breeding of new varieties, provides a genetic foundation to the agronomic and quality traits improvement. In addition, the analysis result shows that the through the molecular marker-assisted testing, rice genetic polymorphism between materials can effectively distinguish different species, provides a certain basis for molecular identification of varieties of rice. A series of investigation such as cytological identification, statistical analysis of agronomic traits, molecular marker-assisted cluster analysis was applied in this experiment to research genetic pattern of autotetraploid rice high generation inbred lines, revealed the genetic characteristics and the genetic composition of agronomic traits, provides a theoretical basis for the further selection of high quality autotetraploid rice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At many locations in Myanmar, ongoing changes in land use have negative environmental impacts and threaten natural ecosystems at local, regional and national scales. In particular, the watershed area of Inle Lake in eastern Myanmar is strongly affected by the environmental effects of deforestation and soil erosion caused by agricultural intensification and expansion of agricultural land, which are exacerbated by the increasing population pressure and the growing number of tourists. This thesis, therefore, focuses on land use changes in traditional farming systems and their effects on socio-economic and biophysical factors to improve our understanding of sustainable natural resource management of this wetland ecosystem. The main objectives of this research were to: (1) assess the noticeable land transformations in space and time, (2) identify the typical farming systems as well as the divergent livelihood strategies, and finally, (3) estimate soil erosion risk in the different agro-ecological zones surrounding the Inle Lake watershed area. GIS and remote sensing techniques allowed to identify the dynamic land use and land cover changes (LUCC) during the past 40 years based on historical Corona images (1968) and Landsat images (1989, 2000 and 2009). In this study, 12 land cover classes were identified and a supervised classification was used for the Landsat datasets, whereas a visual interpretation approach was conducted for the Corona images. Within the past 40 years, the main landscape transformation processes were deforestation (- 49%), urbanization (+ 203%), agricultural expansion (+ 34%) with a notably increase of floating gardens (+ 390%), land abandonment (+ 167%), and marshlands losses in wetland area (- 83%) and water bodies (- 16%). The main driving forces of LUCC appeared to be high population growth, urbanization and settlements, a lack of sustainable land use and environmental management policies, wide-spread rural poverty, an open market economy and changes in market prices and access. To identify the diverse livelihood strategies in the Inle Lake watershed area and the diversity of income generating activities, household surveys were conducted (total: 301 households) using a stratified random sampling design in three different agro-ecological zones: floating gardens (FG), lowland cultivation (LL) and upland cultivation (UP). A cluster and discriminant analysis revealed that livelihood strategies and socio-economic situations of local communities differed significantly in the different zones. For all three zones, different livelihood strategies were identified which differed mainly in the amount of on-farm and off-farm income, and the level of income diversification. The gross margin for each household from agricultural production in the floating garden, lowland and upland cultivation was US$ 2108, 892 and 619 ha-1 respectively. Among the typical farming systems in these zones, tomato (Lycopersicon esculentum L.) plantation in the floating gardens yielded the highest net benefits, but caused negative environmental impacts given the overuse of inorganic fertilizers and pesticides. The Revised Universal Soil Loss Equation (RUSLE) and spatial analysis within GIS were applied to estimate soil erosion risk in the different agricultural zones and for the main cropping systems of the study region. The results revealed that the average soil losses in year 1989, 2000 and 2009 amounted to 20, 10 and 26 t ha-1, respectively and barren land along the steep slopes had the highest soil erosion risk with 85% of the total soil losses in the study area. Yearly fluctuations were mainly caused by changes in the amount of annual precipitation and the dynamics of LUCC such as deforestation and agriculture extension with inappropriate land use and unsustainable cropping systems. Among the typical cropping systems, upland rainfed rice (Oryza sativa L.) cultivation had the highest rate of soil erosion (20 t ha-1yr-1) followed by sebesten (Cordia dichotoma) and turmeric (Curcuma longa) plantation in the UP zone. This study indicated that the hotspot region of soil erosion risk were upland mountain areas, especially in the western part of the Inle lake. Soil conservation practices are thus urgently needed to control soil erosion and lake sedimentation and to conserve the wetland ecosystem. Most farmers have not yet implemented soil conservation measures to reduce soil erosion impacts such as land degradation, sedimentation and water pollution in Inle Lake, which is partly due to the low economic development and poverty in the region. Key challenges of agriculture in the hilly landscapes can be summarized as follows: fostering the sustainable land use of farming systems for the maintenance of ecosystem services and functions while improving the social and economic well-being of the population, integrated natural resources management policies and increasing the diversification of income opportunities to reduce pressure on forest and natural resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GEFSOC Project developed a system for estimating soil carbon (C) stocks and changes at the national and sub-national scale. As part of the development of the system, the Century ecosystem model was evaluated for its ability to simulate soil organic C (SOC) changes in environmental conditions in the Indo-Gangetic Plains, India (IGP). Two long-term fertilizer trials (LTFT), with all necessary parameters needed to run Century, were used for this purpose: a jute (Corchorus capsularis L.), rice (Oryza sativa L.) and wheat (Triticum aestivum L.) trial at Barrackpore, West Bengal, and a rice-wheat trial at Ludhiana, Punjab. The trials represent two contrasting climates of the IGP, viz. semi-arid, dry with mean annual rainfall (MAR) of < 800 mm and humid with > 1600 turn. Both trials involved several different treatments with different organic and inorganic fertilizer inputs. In general, the model tended to overestimate treatment effects by approximately 15%. At the semi-arid site, modelled data simulated actual data reasonably well for all treatments, with the control and chemical N + farm yard manure showing the best agreement (RMSE = 7). At the humid site, Century performed less well. This could have been due to a range of factors including site history. During the study, Century was calibrated to simulate crop yields for the two sites considered using data from across the Indian IGP. However, further adjustments may improve model performance at these sites and others in the IGP. The availability of more longterm experimental data sets (especially those involving flooded lowland rice and triple cropping systems from the IGP) for testing and validation is critical to the application of the model's predictive capabilities for this area of the Indian sub-continent. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pittu and roti are two traditional food items consumed by Sri Lankan people mostly for breakfast or dinner. Rice (Oryza sativa L.) and kurakkan (Eleucine coracana L.) are two types of cereal that can be used to prepare them. The determination of blood glucose elevating effect (glycaemic response) of pittu and roti prepared from rice flour and kurakkan flour was the objective of this study. Proximate composition of Bg 403 rice flour and kurakkan flour was determined and the available carbohydrate content of the two types of cereal was calculated. Pittu and roti were prepared from each flour, following traditional methods and given to eight young healthy adult volunteers. Each subject was given a weighed portion of pittu or roti equivalent to 50 g available carbohydrate as the test food. As the standard food 50 g glucose was given orally. After a 12 hrs overnight fast on the assigned day each subject was given either the standard food or the test food and blood glucose was measured in capillary blood at fasting (0), 15, 30, 45, 60, 90 and 120 min after the consumption of food. The incremental area under the glycaemic response curve (IAUC) for each test food was expressed as a percentage of IAUC of the standard food taken by the same subject and the average value of subjects was taken as the glycemic index (GI) for the test food. Proximate analysis revealed that percentage moisture, crude fat, crude fibre, crude protein and minerals of rice flour and kurakkan flour were 13.0, 1.7, 0.42, 10.3, 0.88 and 13.2, 1.9, 4.4, 8.7 and 2.8, respectively. Accordingly the available carbohydrate percentage of rice flour and kurakkan flour were 73.7 and 69.0, respectively. The GI of pittu and roti, prepared using Bg 403 rice flour were 52 and 64 and that of kurakkan flour were 71 and 80 respectively. Based on the GI, it can be suggested that pittu is better for health than roti, while rice flour is better than kurakkan flour to prepare these. The basis of recommending kurkkan flour based products for diabetic people has to be re-examined in the light of these findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O trabalho objetivou avaliar o efeito de diferentes manejos de água adotados na semeadura do arroz (Oryza sativa L.), em sistema pré-germinado, no estabelecimento das plantas e nos componentes vegetativos. O experimento foi conduzido no ano agrícola de 1995/96 em caixas de cimento amianto com capacidade de 500 L, contendo solo Aluvial Eutrófico de várzea, na Fazenda Experimental Lageado, no Município de Botucatu, SP. A cultivar empregada foi a IAC 102, e os tratamentos foram sete manejos de água. A semeadura de sementes pré-germinadas em solo saturado ou em lmina de água limpa ou turva e sua retirada três dias após, apresentaram resultados semelhantes quanto à população e ao estabelecimento das plantas. A retirada da lmina de água três dias após a semeadura resultou em maior população e fixação de plantas do que a permanência da lmina por período maior de sete dias. A manutenção da lmina da água limpa ou turva afetou a população de plantas e prejudicou o seu desenvolvimento inicial, causando seu estiolamento com significativa redução da produção de matéria seca. A turvação da água antes da semeadura reduziu o desenvolvimento e a população de plantas quando a lmina de água não foi eliminada por evaporação ou retirada três dias após a semeadura.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rice is one of the main sources of the humanity's feeding. During the agricultural year 2009/2010, in Selviria County, Mato Grosso do Sul State, in the Brazilian Savannah, an experiment was installed with rice upland in a Dystropherric Red Latosol (Typic Acrustox) under no-tillage, irrigated by central pivot, with the purpose of selecting the best components production to explain the variability the irrigated rice yield upland. The geostatistical grid was installed, to collect the data, with 120 sampling points, in an area of 3.0 ha and and homogeneous slope of 0.055 m m(-1). The medium rice yield was of the 5980 kg ha(-1). For the simple lineal regressions, the number of spikelets grenades for panicle presented the best direct potential correlation with the yield rice, given for: PGO = 115,5.NEG(0,770). However, for the multiple lineal regressions, the equation equacao PGO = 2754,30-411,55.NEG-461,07. NEC+436,59. NET it was the one that better she came to esteem the yield rice. However, spatial, it was not possible to establish correlation between the yield rice and the components production, once none of those it presented spatial dependence in their data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnolgico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was conducted in Adamantina, region of Alta Paulista, São Paulo State, Brazil, from 1989 to 1993. Yield of Apoatã coffee (Coffea canephora Pierre ex Froehner) was evaluated during four years of intercropping with five plant species: IAC 20 - cotton (Gossypium hirsutum L.); cv. Tatu - peanut (Arachis hypogaea L.); IAC 165 - rice (Oryza sativa L.); cv. Guarani - castor bean (Ricinus communis L.) and IAC 100-B - corn (Zea mays L.). The crops were seeded 50 cm apart from coffee canopy. The treatments were arranged in randomized complete block design with five replications. Yield was significantly decreased when coffee was intercropped with castor bean, corn, cotton and peanut, but height and diameter of orthotropic branches were not affected. Linear correlation analysis showed that coffee yield was inversely correlated with the dry biomass of the intercrops.