962 resultados para rhodium dimer
Resumo:
Amyloid-beta peptide (A beta) is pivotal to the pathogenesis of Alzheimer disease. Here we report the formation of a toxic A beta-Cu2+ complex formed via a histidine-bridged dimer, as observed at Cu2+/ peptide ratios of > 0.6:1 by EPR spectroscopy. The toxicity of the A beta-Cu2+ complex to cultured primary cortical neurons was attenuated when either the pi- or tau-nitrogen of the imidazole side chains of His were methylated, thereby inhibiting formation of the His bridge. Toxicity did not correlate with the ability to form amyloid or perturb the acyl-chain region of a lipid membrane as measured by diphenyl- 1,3,5-hexatriene anisotropy, but did correlate with lipid peroxidation and dityrosine formation. P-31 magic angle spinning solid-state NMR showed that A beta and A beta-Cu2+ complexes interacted at the surface of a lipid membrane. These findings indicate that the generation of the A beta toxic species is modulated by the Cu2+ concentration and the ability to form an intermolecular His bridge.
Resumo:
We describe the mechanism of ribonuclease inhibition by ribonuclease inhibitor, a protein built of leucine-rich repeats, based on the crystal structure of the complex between the inhibitor and ribonuclease A. The structure was determined by molecular replacement and refined to an R(cryst) of 19.4% at 2.5 Angstrom resolution. Ribonuclease A binds to the concave region of the inhibitor protein comprising its parallel beta-sheet and loops. The inhibitor covers the ribonuclease active site and directly contacts several active-site residues. The inhibitor only partially mimics the RNase-nucleotide interaction and does not utilize the pi phosphate-binding pocket of ribonuclease A, where a sulfate ion remains bound. The 2550 Angstrom(2) of accessible surface area buried upon complex formation may be one of the major contributors to the extremely tight association (K-i = 5.9 x 10(-14) M). The interaction is predominantly electrostatic; there is a high chemical complementarity with 18 putative hydrogen bonds and salt links, but the shape complementarity is lower than in most other protein-protein complexes. Ribonuclease inhibitor changes its conformation upon complex formation; the conformational change is unusual in that it is a plastic reorganization of the entire structure without any obvious hinge and reflects the conformational flexibility of the structure of the inhibitor. There is a good agreement between the crystal structure and other biochemical studies of the interaction. The structure suggests that the conformational flexibility of RI and an unusually large contact area that compensates for a lower degree of complementarity may be the principal reasons for the ability of RI to potently inhibit diverse ribonucleases. However, the inhibition is lost with amphibian ribonucleases that have substituted most residues corresponding to inhibitor-binding residues in RNase A, and with bovine seminal ribonuclease that prevents inhibitor binding by forming a dimer. (C) 1996 Academic Press Limited
Resumo:
Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the replication terminator protein (RTP) and DNA terminator sites. While determination of the crystal structure of RTP has facilitated our understanding of how a single RTP dimer interacts with terminator DNA, additional information is required in order to understand the assembly of a functional fork arrest complex, which requires an interaction between two RTP dimers and the terminator site. In this study, we show that the conformation of the major B. subtilis DNA terminator, Terl, becomes considerably distorted upon binding RTP. Binding of the first dimer of RTP to the B site of Terl causes the DNA to become slightly unwound and bent by similar to 40 degrees. Binding of a second dimer of RTP to the A site causes the bend angle to increase to similar to 60 degrees. We have used this new data to construct two plausible models that might explain how the ternary terminator complex can block DNA replication in a polar manner, in the first model, polarity of action is a consequence of the two RTP-DNA half-sites having different conformations. These different conformations result from different RTP-DNA contacts at each half-site (due to the intrinsic asymmetry at the terminator DNA), as well as interactions (direct or indirect) between the RTP dimers on the DNA. In the second model, polar fork arrest activity is a consequence of the different affinities of RTP for the A and B sites of the terminator DNA, modulated significantly by direct or indirect interactions between the RTP dimers.
Resumo:
BACKGROUND & AIMS: There is controversy over whether coagulation status predicts bleeding caused by ulceration after esophageal varices band ligation (EVL). METHODS: EVL was performed for primary (n = 45) or secondary (n = 105) prophylaxis in 150 patients with cirrhosis (Child A, n = 74, 49%; Child B, n = 42, 28%; Child C, n = 34, 23%). International normalized ratio (INR) and platelet counts were assessed in all. In 92 patients, levels of factor V, fibrinogen, D-dimer, protein C and protein S, von Willebrand factor, and thromboelastography (TEG) were assessed. Platelet count < 50 x 10(3)/mm(3) and INR > 1.5 were considered high-risk cutoff for bleeding. Conversely, platelet count >= 50 x 10(3)/mm(3) with INR <= 1.5 were safe cutoffs. RESULTS: Overall, 11 patients (7.3%) had post-EVL ulcer bleeding. Bleeding occurred in S patients with Child A/B (4.3%) and 6 patients with Child C (17%) (P = .0174 for Child A/B versus Child C). Eight patients with bleeding were among the 110 below the cutoff for INR and platelet count, whereas only 3 of the patients with bleeding were among the 40 patients with purported high-risk values (P = 1.0). Among the 92 patients with expanded coagulation tests, bleeding occurred in S. There was no difference in any of the coagulation parameters, including overall TEG patterns, between patients who did and did nor bleed. CONCLUSIONS: Post-EVL ulcer bleeding was associated with Child C status but not with conventional or expanded coagulation indices in cirrhotic patients without renal failure or infection undergoing elective EVL. These results call into question the common use of prophylactic procoagulants in the elective setting.
Resumo:
Molybdenum hexacarbonyl reacted with the pendant-arm macrocycles 10-methyl-1,4,8, 12-tetraazacyclopentadecane-10-amine (L-1) and trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6, 13-diamine (L-2) in the absence of air to form complexes fac-[MoL1(CO)(3)] and [Mo2L2(CO)(8)] respectively. The mononuclear complex has the macrocycle bound in a tridentate manner, including the pendant primary amine, whereas the dinuclear complex exhibits a bridging bis(didentate) co-ordination mode, again involving the pendant primary amines. Structures have been defined by crystal structure analyses. The preferential binding of the pendant primary amines rather than additional secondary amines parallels similar behaviour observed earlier with some mercury(II) and rhodium(III) complexes, and points to the important general role of this pendant, despite being fused directly to the macrocyclic ring, in metal-ion binding.
Resumo:
Herein, we describe a confirmed case of Loxosceles spider bite that illustrates the critical complications seen in loxoscelism, including skin necrosis, rhabdomyolysis, hemolysis, coagulopathy, acute kidney failure, and electrolyte disorders. Upon initial assessment, laboratory studies revealed the following: the white blood cell count was 29 400 WBCs/mm(3), hemoglobin was 9.2g/dL, and the platelet count was 218000cells/mm(3). Coagulation studies revealed the following: international normalized ratio, 1.83; activated partial-thromboplastin time, 62s; D-dimer, 600 ng/mL (normal range < 500 ng/mL); free protein S, 37% (normal range = 64-114%); protein C, negative; and antithrombin III, negative. Various serum levels were abnormal: urea, 110mg/dL; creatinine, 3.1 mg/dL; indirect bilirubin, 3.8 mg/dL; creatine kinase, 1631 U/L, lactate dehydrogenase, 6591 U/L; potassium 6.2mmol/L. Urine tests were positive for hemoglobin and bilirubin. In addition, concentrations of interleukin-6 and tumor necrosis factor-alpha were notably elevated in the serum. In conclusion, physicians must be alert to the possibility of loxoscelism when a patient presents with the clinical and laboratory findings described above, especially if the patient resides in an endemic area. Advances in our understanding of multiple pathways and mediators that orchestrate the response to Loxosceles venom might reveal new possibilities for the management of loxoscelism. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Objective To delineate the effects of extracorporeal bypass on biomarkers of hemostasis, fibrinolysis, and inflammation and clinical sequelae. Methods Patients were assigned prospectively and randomly to either on-pump (n=41) or off-pump (n=51) coronary bypass surgery. The concentrations of C-reactive protein, fibrinogen, D-dimer, and plasminogen activator inhibitor type-1 in blood were quantified before and after (1 and 24 h) surgery. Similar surgical and anesthetic procedures were used for both groups. Clinical events were assessed during initial hospitalization and at the end of I year. Results The concentrations of plasminogen activator inhibitor type-1 and D-dimer were greater compared with preoperative values 1 and 24 h after surgery in both groups, but their concentrations increased to a greater extent 24 h after surgery in the on-pump group (P<0.01). The concentration of C-reactive protein did not change appreciably immediately after surgery in either group but increased in a parallel manner 24 h after either on-pump or off-pump surgery (P<0.01). Bypass surgery in the on-pump group was associated with greater blood loss during surgery and more bleeding after surgery (P <= 0.01). The incidence of all other complications was similar in the two groups. Conclusion On-pump surgery was associated with biochemical evidence of a prothrombotic state early after surgery but no greater incidence of thrombotic events was observed. The prothrombotic state might be a consequence of extracorporeal bypass, compensation in response to more bleeding, or both in patients undergoing on-pump surgery. Coron Artery Dis 20:100-105 (C) 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Objective: Thrombosis has been widely described after the Fontan procedure. The vascular endothelium plays a central role in the control of coagulation and fibrinolysis. The aim of this study was to investigate if patients undergoing a modified Fontan procedure have impaired endothelial function and fibrinolysis in the late postoperative course. Patients and methods: We compared 23 patients aged from 7 to 26 years with age-matched healthy volunteers, collecting blood samples prior to and following standardized venous occlusion testing. Plasma levels of von Willebrand factor antigen, tissue-type plasminogen activator antigen, plasminogen activator inhibitor-1, and D-dimer were measured with enzyme-linked immunosorbent assay. Results: We found increased plasma levels of von Willebrand factor antigen in patients when compared to controls (p = 0.003). At the basal condition, concentrations of tissue-type plasminogen activator antigen and plasminogen activator inhibitor-1 antigen in the plasma, as well as their activity, were not significantly different between patients and controls. Following venous occlusion, concentrations of tissue-type plasminogen activator antigen in the plasma were significantly increased both in patients and controls, compared to pre-occlusion values. D-dimer was within the reference range. Multivariate discriminant analysis differentiated patients and their controls on the basis of differences for plasminogen activator inhibitor-1 and von Willebrand factor antigen (p = 0.0016). Conclusions: Our data suggest that patients with the Fontan circulation may have endothelial dysfunction, as indicated by raised levels of von Willebrand factor. Fibrinolysis seems to be relatively preserved, as suggested by appropriate response to venous occlusion.
Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites
Resumo:
Objective. To compare currently available low-shrinkage composites with others regarding polymerization stress, volumetric shrinkage (total and post-gel), shrinkage rate and elastic modulus. Methods. Seven BisGMA-based composites (Durafill/DU, Filtek Z250/FZ, Heliomolar/HM, Aelite LS Posterior/AP, Point 4/P4, Filtek Supreme/SU, ELS/EL), a silorane-based (Filtek LS, LS), a urethane-based (Venus Diamond, VD) and one based on a dimethacrylate-derivative of dimer acid (N`Durance, ND) were tested. Polymerization stress was determined in 1-mm high specimens inserted between two PMMA rods attached to a universal testing machine. Total volumetric shrinkage was measured using a mercury dilatometer. Maximum shrinkage rate was used as a parameter of the reaction speed. Post-gel shrinkage was measured using strain-gages. Elastic modulus was obtained by three-point bending. Data were submitted to one-way ANOVA/Tukey test (p = 0.05), except for elastic modulus (Kruskal-Wallis). Results. Composites ranked differently for total and post-gel shrinkage. Among the materials considered as ""low-shrinkage"" by the respective manufacturers, LS, EL and VD presented low post-gel shrinkage, while AP and ND presented relatively high values. Polymerization stress showed a strong correlation with post-gel shrinkage except for LS, which presented high stress. Elastic modulus and shrinkage rate showed weak relationships with polymerization stress. Significance. Not all low-shrinkage composites demonstrated reduced polymerization shrinkage. Also, in order to effectively reduce polymerization stress, a low post-gel shrinkage must be associated to a relatively low elastic modulus. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
GH actions are dependent on receptor dimerization. The GH receptor antagonist, B2036-PEG, has been developed for treating acromegaly. B2036 has mutations in site 1 to enhance receptor binding and in site 2 to block receptor dimerization. Pegylation (B2036-PEG) increases half-life and lowers immunogenicity, but high concentrations are required to control insulin-like growth factor-I levels. We examined antagonist structure and function and the impact of pegylation on biological efficacy. Unpegylated B2036 had a 4.5-fold greater affinity for GH binding protein (GHBP) than GH but similar affinity for membrane receptor. Pegylation substantially reduced membrane binding affinity and receptor antagonism, as assessed by a transcription assay, by 39- and 20-fold, respectively. GHBP reduced antagonist activity of unpegylated B2036 but did not effect antagonism by B2036-PEG. B2036 down-regulated receptors, and membrane binding sites doubled in the presence of dimerization-blocking antibodies, suggesting that B2036 binds to a receptor dimer. It is concluded that the high concentration requirement of B2036-PEG for clinical efficacy relates to pegylation, which decreases binding to membrane receptor but has the advantages of reduced clearance, immunogenicity, and interactions with GHBP. Our studies suggest that B2036 binds to a receptor dimer and induces internalization but not signaling.
Resumo:
The suitability of sedimentation equilibrium for characterizing the self-association of muscle glycogen phosphorylase b has been reappraised. Whereas sedimentation equilibrium distributions for phosphorylase b in 40 mM Hepes buffer (pH 6.8) supplemented with 1 mM AMP signify a lack of chemical equilibrium attainment, those in buffer supplemented additionally with potassium sulfate conform with the requirements of a dimerizing system in chemical as we:ll as sedimentation equilibrium. Because the rate of attainment of chemical equilibrium under the former conditions is sufficiently slow to allow resolution of the dimeric and tetrameric enzyme species by sedimentation velocity, this procedure has been used to examine the effects of thermodynamic nonideality arising from molecular crowding try trimethylamine N-oxide on the self-association behaviour of phosphorylase b. In those terms the marginally enhanced extent of phosphorylase b self-association observed in the presence of high concentrations of the cosolute is taken to imply that the effects of thermodynamic nonideality on the dimer-tetramer equilibrium are being countered by those displacing the T reversible arrow R isomerization equilibrium for dimer towards the smaller, nonassociating T state. Because the R state is the enzymically active form, an inhibitory effect is the predicted consequence of molecular crowding by high concentrations of unrelated solutes. Thermodynamic nonideality thus provides an alternative explanation for the inhibitory effects of high concentrations of glycerol, sucrose and ethylene glycol on phosphorylase b activity, phenomena that have been attributed to extremely weak interaction of these cryoprotectants with the T state of the enzyme.
Resumo:
We solve the Sp(N) Heisenberg and SU(N) Hubbard-Heisenberg models on the anisotropic triangular lattice in the large-N limit. These two models may describe respectively the magnetic and electronic properties of the family of layered organic materials K-(BEDT-TTF)(2)X, The Heisenberg model is also relevant to the frustrated antiferromagnet, Cs2CuCl4. We find rich phase diagrams for each model. The Sp(N) :antiferromagnet is shown to have five different phases as a function of the size of the spin and the degree of anisotropy of the triangular lattice. The effects of fluctuations at finite N are also discussed. For parameters relevant to Cs2CuCl4 the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The SU(N) Hubbard-Heisenberg model exhibits an insulating dimer phase, an insulating box phase, a semi-metallic staggered flux phase (SFP), and a metallic uniform phase. The uniform and SFP phases exhibit a pseudogap, A metal-insulator transition occurs at intermediate values of the interaction strength.
Resumo:
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) catalyzes the first step in branched-chain amino acid biosynthesis. The enzyme requires thiamin diphosphate and FAD for activity, but the latter is unexpected, because the reaction involves no oxidation or reduction. Due to its presence in plants, AHAS is a target for sulfonylurea and imidazolinone herbicides. Here, the crystal structure to 2.6 A resolution of the catalytic subunit of yeast AHAS is reported. The active site is located at the dimer interface and is near the proposed herbicide-binding site. The conformation of FAD and its position in the active site are defined. The structure of AHAS provides a starting point for the rational design of new herbicides. (C) 2002 Elsevier Science Ltd.
Resumo:
Given the importance of protein complexes as therapeutic targets, it is necessary to understand the physical chemistry of these interactions under the crowded conditions that exist in cells. We have used sedimentation equilibrium to quantify the enhancement of the reversible homodimerization of alpha-chymotrypsin by high concentrations of the osmolytes glucose, sucrose, and raffinose. In an attempt to rationalize the ostuolyte-mediated stabilization of the a-chymotrypsin homodimer, we have used models based on binding interactions (transfer-free energy analysis) and steric interactions (excluded volume theory) to predict the stabilization. Although transfer-free energy analysis predicts reasonably well the relatively small stabilization observed for complex formation between cytochrome c and cytochrome c peroxidase, as well as that between bobtail quail lysozyme and a monoclonal Fab fragment, it underestimates the sugar-mediated stabilization of the alpha-chymotrypsin dimer. Although predictions based on excluded volume theory overestimate the stabilization, it would seem that a major determinant in the observed stabilization of the a-chymotrypsin homodimer is the thermodynamic nonideality arising from molecular crowding by the three small sugars.
Resumo:
One of the major regulators of mitosis in somatic cells is cdc25B. cdc25B is tightly regulated at multiple levels. The final activation step involves the regulated binding of 14-3-3 proteins. Previous studies have demonstrated that Ser-323 is a primary 14-3-3 binding site in cdc25B, which influences its activity and cellular localization. 14-3-3 binding to this site appeared to interact with the N-terminal domain of cdc25B to regulate its activity. The presence of consensus 14-3-3 binding sites in the N-terminal domain suggested that the interaction is through direct binding of the 14-3-3 dimer to sites in the N-terminal domain. We have identified Ser-151 and Ser-230 in the N-terminal domain as functional 14-3-3 binding sites utilized by cdc25B in vivo. These low affinity sites cooperate to bind the 14-3-3 dimer bound to the high affinity Ser-323 site, thus forming an intramolecular bridge that constrains cdc25B structure to prevent access of the catalytic site. Loss of 14-3-3 binding to either N-terminal site relaxes cdc25B structure sufficiently to permit access to the catalytic site, and the nuclear export sequence located in the N-terminal domain. Mutation of the Ser-323 site was functionally equivalent to the mutation of all three sites, resulting in the complete loss of 14-3-3 binding, increased access of the catalytic site, and access to nuclear localization sequence.