971 resultados para repeated-event memory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulse-amplitude-modulation chlorophyll fluorometry was used to examine changes in dark-adapted F-v/F-m of endosymbiotic dinoflagellate microalgae within the tissues of the temperate coral Plesiastrea versipora exposed to elevated seawater temperature. The F-v/F-m was markedly reduced following exposure of corals to 28 degrees C for 48 h. When corals were returned to ambient (24 degrees C) conditions, F-v/F-m increased in an initial rapid and then secondary slower phase. Tissue discolouration (coral bleaching), caused by a significant decrease in the density of algae, was observed during the first 2-3 days of the recovery period. After 14 days, F-v/F-m was still significantly lower than in control corals. The recovery of F-v/F-m is discussed in terms of repair processes within the symbiotic algae, division of healthy algae and also the selective removal of photo-damaged dinoflagellates. Under field conditions, bleached corals sampled at Heron Island Reef during a bleaching event had significantly lower F-v/F-m than non-bleached colonies; four months after the bleaching event, there were no differences in F-v/F-m or algal density in corals marked as having bleached or having shown no signs of colour loss. The results of this laboratory and field study are consistent with the hypothesis that an impairment of photosynthesis occurs during heat-stress, and is the underlying cause of coral bleaching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background From the mid-1980s to mid-1990s, the WHO MONICA Project monitored coronary events and classic risk factors for coronary heart disease (CHD) in 38 populations from 21 countries. We assessed the extent to which changes in these risk factors explain the variation in the trends in coronary-event rates across the populations. Methods In men and women aged 35-64 years, non-fatal myocardial infarction and coronary deaths were registered continuously to assess trends in rates of coronary events. We carried out population surveys to estimate trends in risk factors. Trends in event rates were regressed on trends in risk score and in individual risk factors. Findings Smoking rates decreased in most male populations but trends were mixed in women; mean blood pressures and cholesterol concentrations decreased, body-mass index increased, and overall risk scores and coronary-event rates decreased. The model of trends in 10-year coronary-event rates against risk scores and single risk factors showed a poor fit, but this was improved with a 4-year time lag for coronary events. The explanatory power of the analyses was limited by imprecision of the estimates and homogeneity of trends in the study populations. Interpretation Changes in the classic risk factors seem to partly explain the variation in population trends in CHD. Residual variance is attributable to difficulties in measurement and analysis, including time lag, and to factors that were not included, such as medical interventions. The results support prevention policies based on the classic risk factors but suggest potential for prevention beyond these.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of event time and size statistics in two heterogeneous cellular automaton models of earthquake behavior are studied and compared to the evolution of these quantities during observed periods of accelerating seismic energy release Drier to large earthquakes. The two automata have different nearest neighbor laws, one of which produces self-organized critical (SOC) behavior (PSD model) and the other which produces quasi-periodic large events (crack model). In the PSD model periods of accelerating energy release before large events are rare. In the crack model, many large events are preceded by periods of accelerating energy release. When compared to randomized event catalogs, accelerating energy release before large events occurs more often than random in the crack model but less often than random in the PSD model; it is easier to tell the crack and PSD model results apart from each other than to tell either model apart from a random catalog. The evolution of event sizes during the accelerating energy release sequences in all models is compared to that of observed sequences. The accelerating energy release sequences in the crack model consist of an increase in the rate of events of all sizes, consistent with observations from a small number of natural cases, however inconsistent with a larger number of cases in which there is an increase in the rate of only moderate-sized events. On average, no increase in the rate of events of any size is seen before large events in the PSD model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of a large ongoing project, the Memory, Attention and Problem Solving (MAPS) study, we investigated whether genetic variability explains some of the variance in psychophysiological correlates of brain function, namely, the P3 and SW components of event-related potentials (ERPs). These ERP measures are minute time recordings of brain processes and, because they reflect fundamental cognitive processing, provide a unique window on the millisecondto- millisecond transactions that occur at the cognitive level and taking place in the human brain. The extent to which the variance in P3 and SW components is influenced by genetic factors was examined in 350 identical and nonidentical twin pairs aged 16 years. ERPs were recorded from 15 scalp electrodes during the performance of a visuospatial delayed response task that engages working memory. Multivariate genetic analyses using MX were used to estimate genetic and environmental influences on individual differences in brain functioning and to identify putative genetic factors common to the ERP measures and psychometric IQ. For each of the ERP measures, correlation among electrode sites was high, a spatial pattern was evident, and a large part of the genetic variation in the ERPs appeared to be mediated by a common genetic factor. Moderate within-pair concordance in MZ pairs was found for all ERP measures, with higher correlations found for P3 than SW, and the MZ twin pair correlations were approximately twice the DZ correlations, suggesting a genetic influence. Correlations between ERP measures and psychometric IQ were found and, although moderately low, were evident across electrode site. The analyses show that the ERP components, P3 and SW, are promising phenotypes of the neuroelectrical activity of the brain and have the potential to be used in linkage and association analysis in the search for QTLs influencing cognitive function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of functional brain imaging in humans and single cell recordings in monkeys have generally shown preferential involvement of the medially located supplementary motor area (SMA) in self-initiated movement and the lateral premotor cortex in externally cued movement. Studies of event-related cortical potentials recorded during movement preparation, however, generally show increased cortical activity prior to self-initiated movements but little activity at early stages prior to movements that are externally cued at unpredictable times. In this study, the spatial location and relative timing of activation for self-initiated and externally triggered movements were examined using rapid event-related functional MRI. Twelve healthy right-handed subjects were imaged while performing a brief finger sequence movement (three rapid alternating button presses: index-middle-index finger) made either in response to an unpredictably timed auditory cue (between 8 to 24 s after the previous movement) or at self-paced irregular intervals. Both movement conditions involved similar strong activation of medial motor areas including the pre-SMA, SMA proper, and rostral cingulate cortex, as well as activation within contralateral primary motor, superior parietal, and insula cortex. Activation within the basal ganglia was found for self-initiated movements only, while externally triggered movements involved additional bilateral activation of primary auditory cortex. Although the level of SMA and cingulate cortex activation did not differ significantly between movement conditions, the timing of the hemodynamic response within the pre-SMA was significantly earlier for self-initiated compared with externally triggered movements. This clearly reflects involvement of the pre-SMA in early processes associated with the preparation for voluntary movement. (C) 2002 Elsevier Science.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity within motor areas of the cortex begins to increase 1 to 2 s prior to voluntary self-initiated movement (termed the Bereitschaftspotential or readiness potential). There has been much speculation and debate over the precise source of this early premovement activity as it is important for understanding the roles of higher order motor areas in the preparation and readiness for voluntary movement. In this study, we use high-field (3-T) event-related fMRI with high temporal sampling (partial brain volumes every 250 ms) to specifically examine hemodynamic response time courses during the preparation, readiness, and execution of purely self-initiated voluntary movement. Five right-handed healthy volunteers performed a rapid sequential finger-to-thumb movement performed at self-determined times (12-15 trials). Functional images for each trial were temporally aligned and the averaged time series for each subject was iteratively correlated with a canonical hemodynamic response function progressively shifted in time. This analysis method identified areas of activation without constraining hemodynamic response timing. All subjects showed activation within frontal mesial areas, including supplementary motor area (SMA) and cingulate motor areas, as well as activation in left primary sensorimotor areas. The time courses of hemodynamic responses showed a great deal of variability in shape and timing between subjects; however, four subjects clearly showed earlier relative hemodynamic responses within SMA/cingulate motor areas compared with left primary motor areas. These results provide further evidence that the SMA and cingulate motor areas are major contributors to early stage premovement activity and play an important role in the preparation and readiness for voluntary movement. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cortical activity associated with voluntary movement is shifted from medial to lateral premotor areas in Parkinson's disease. This occurs bilaterally, even for unilateral movements. We have used both EEG and MEG to further investigate medial and lateral premotor activity in patients with hemi-Parkinson's disease, in whom basal ganglia impairment is most pronounced in one hemisphere. The CNV, recorded from 21 scalp positions in a Go/NoGo task, was maximal over central medial regions in control subjects. For hemi-Parkinson's disease subjects, activity was shifted more frontally, reduced in the midline and lateralised towards the side of greatest basal ganglia impairment. With 143 channel whole-scalp magneto encephalography (MEG) we are further examining asymmetries in supplementary motor/premotor cortical activity prior to self-paced voluntary movement. In preliminary results, one hemi-Parkinson's disease patient with predominantly left-side symptoms showed strong medial activity consistent with a dominant source in the left supplementary motor area (SMA). Three patients showed little medial activity, but early bilateral sources within lateral premotor cortex. Results suggest greater involvement of lateral premotor rather than the SMA prior to movement in Parkinson's disease and provide evidence for asymmetric function of the SMA in hemi- Parkinson's disease, with reduced activity on the side of greatest basal ganglia deficit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (FMRI) analysis methods can be quite generally divided into hypothesis-driven and data-driven approaches. The former are utilised in the majority of FMRI studies, where a specific haemodynamic response is modelled utilising knowledge of event timing during the scan, and is tested against the data using a t test or a correlation analysis. These approaches often lack the flexibility to account for variability in haemodynamic response across subjects and brain regions which is of specific interest in high-temporal resolution event-related studies. Current data-driven approaches attempt to identify components of interest in the data, but currently do not utilise any physiological information for the discrimination of these components. Here we present a hypothesis-driven approach that is an extension of Friman's maximum correlation modelling method (Neurolmage 16, 454-464, 2002) specifically focused on discriminating the temporal characteristics of event-related haemodynamic activity. Test analyses, on both simulated and real event-related FMRI data, will be presented.