917 resultados para reinforced concrete structures
Resumo:
Durability of concrete is a great concern to all designers, owners and users of reinforced concrete structures. As a result, more restrictive regulations are being introduced in various Codes of Practice dealing with the design of these structures. Attempts are being made by various researchers to develop performance based specification. For this to be successful standard non destructive tests are required which will be used to assess the durability of concretes. In parallel with this approach, a research team in Queen’s University Belfast, U. K., investigated the effect of different mix parameters on workability, strength and various permeation properties. Furthermore, durability parameters such as freeze-thaw salt scaling resistance and carbonation depth were also investigated. The research was part funded by the Department of Environment, Transport and the Regions (DETR). This paper reports of the findings from this study. The results from this investigation showed that some of the non destructive tests used were reasonably well correlated with carbonation and freeze-thaw salt scaling resistance of CEM I concrete. If the mix parameters such as aggregate-cement ratio or water-cement ratio are known, better correlation can be obtained. Further investigation is required varying other mix parameters including various aggregates, admixtures and air entrainments before the result can be used for developing mix design methods for durable concretes. Also long term site tests are required to validate the results obtained from the accelerated laboratory tests used to study the carbonation resistance and freeze-thaw salt scaling resistance.
Resumo:
The performance of the surface zone of concrete is acknowledged as a major factor governing the rate of deterioration of reinforced concrete structures as it provides the only barrier to the ingress of water containing dissolved ionic species such as chlorides which, ultimately, initiate corrosion of the reinforcement. In-situ monitoring of cover-zone concrete is therefore critical in attempting to make realistic predictions as to the in-service performance of the structure. To this end, this paper presents developments in a remote interrogation system to allow continuous, real-time monitoring of the cover-zone concrete from an office setting. Use is made of a multi-electrode array embedded within cover-zone concrete to acquire discretized electrical resistivity and temperature measurements, with both parameters monitored spatially and temporally. On-site instrumentation, which allows remote interrogation of concrete samples placed at a marine exposure site, is detailed, together with data handling and processing procedures. Site-measurements highlight the influence of temperature on electrical resistivity and an Arrhenius-based temperature correction protocol is developed using on-site measurements to standardize resistivity data to a reference temperature; this is an advancement over the use of laboratory-based procedures. The testing methodology and interrogation system represents a robust, low-cost and high-value technique which could be deployed for intelligent monitoring of reinforced concrete structures.
Resumo:
Permeation characteristics and fracture strength are the fundamental properties of concrete that influence the initiation and extent of damage and can form the basis by which deterioration can be predicted. The relationship between these properties and deterioration mechanisms is discussed along with the different models representing their interaction with the environment. Mehta presented a holistic model of the deterioration of concrete based on the environmental action on the microstructure of concrete. Using a similar approach, a detailed investigation on the causes of concrete deterioration is used to develop a macro-model for each mechanism relating to the physical properties of concrete. A single interaction model is then presented for all types of deterioration, emphasizing the permeation properties of concrete. Data from an in situ investigation of concrete bridges in Northern Ireland is used to validate this model. This is followed by a micro-predictive model which includes an ionic transport sub-model, a deterioration sub-model and a structural sub-model and affords quantitative prediction of the deterioration of concrete structures. The quantitative predictive capabilities of the micro-model are demonstrated with the use of reported experimental data.