577 resultados para redbay ambrosia beetle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study provides the first spatially detailed and complete inventory of Ambrosia pollen sources in Italy – the third largest centre of ragweed in Europe. The inventory relies on a well tested top-down approach that combines local knowledge, detailed land cover, pollen observations and a digital elevation model that assumes permanent ragweed populations mainly grow below 745m. The pollen data were obtained from 92 volumetric pollen traps located throughout Italy during 2004-2013. Land cover is derived from Corine Land cover information with 100m resolution. The digital elevation model is based on the NASA shuttle radar mission with 90m resolution. The inventory is produced using a combination of ArcGIS and Python for automation and validated using cross-correlation and has a final resolution of 5km x 5km. The method includes a harmonization of the inventory with other European inventories for the Pannonian Plain, France and Austria in order to provide a coherent picture of all major ragweed sources. The results show that the mean annual pollen index varies from 0 in South Italy to 6779 in the Po Valley. The results also show that very large pollen indexes are observed in the Milan region, but this region has smaller amounts of ragweed habitats compared to other parts of the Po Valley and known ragweed areas in France and the Pannonian Plain. A significant decrease in Ambrosia pollen concentrations was recorded in 2013 by pollen monitoring stations located in the Po Valley, particularly in the Northwest of Milan. This was the same year as the appearance of the Ophraella communa leaf beetle in Northern Italy. These results suggest that ragweed habitats near to the Milan region have very high densities of Ambrosia plants compared to other known ragweed habitats in Europe. The Milan region therefore appears to contain habitats with the largest ragweed infestation in Europe, but a smaller amount of habitats is a likely cause the pollen index to be lower compared to central parts of the Pannonian Plain. A low number of densely packed habitats may have increased the impact of the Ophraella beetle and might account for the documented decrease in airborne Ambrosia pollen levels, an event that cannot be explained by meteorology alone. Further investigations that model atmospheric pollen before and after the appearance of the beetle in this part of Northern Italy are needed to assess the influence of the beetle on airborne Ambrosia pollen concentrations. Future work will focus on short distance transport episodes for stations located in the Po Valley, and long distance transport events for stations in Central Italy that exhibit peaks in daily airborne Ambrosia pollen levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: The European Commission Cooperation in Science and Technology (COST) Action FA1203 “SMARTER” aims to make recommendations for the sustainable management of Ambrosia across Europe and for monitoring its efficiency and cost effectiveness. The goal of the present study is to provide a baseline for spatial and temporal variations in airborne Ambrosia pollen in Europe that can be used for the management and evaluation of this noxious plant . Location: The full range of Ambrosia artemisiifolia L. distribution over Europe (39oN-60oN; 2oW-45oE). Methods: Airborne Ambrosia pollen data for the principal flowering period of Ambrosia (August-September) recorded during a 10-year period (2004-2013) were obtained from 242 monitoring sites. The mean sum of daily average airborne Ambrosia pollen and the number of days that Ambrosia pollen was recorded in the air were analysed. The mean and Standard Deviation (SD) were calculated regardless of the number of years included in the study period, while trends are based on those time series with 8 or more years of data. Trends were considered significant at p < 0.05. Results: There were few significant trends in the magnitude and frequency of atmospheric Ambrosia pollen (only 8% for the mean sum of daily average Ambrosia pollen concentrations and 14% for the mean number of days Ambrosia pollen was recorded in the air). Main conclusions: The direction of any trends varied locally and reflect changes in sources of the pollen, either in size or in distance from the monitoring station. Pollen monitoring is important for providing an early warning of the expansion of this invasive and noxious plant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fumigation with phosphine gas is the primary method of controlling stored grain pests. In Turkey, phosphine has been used extensively since the 1950's. Even though high levels of phosphine resistance have been detected in several key stored products pests across the world, it has never been studied in Turkey despite this long history of phosphine use. High-level phosphine resistance has been detected and genetically characterised previously in the rust red flour beetle, Tribolium castaneum in other countries. Since this pest is also a common problem in stored grain environment in Turkey, the current study was undertaken for the first time, to investigate the distribution and strength of phosphine resistance in T. castaneum. Four strains of T. castaneum were tested through bioassays for determining the weak and strong phosphine resistance phenotypes on the basis of the response of adults to discriminating phosphine concentrations of 0.03 mg/L and 0.25 mg/L, for 20 hour exposures respectively. Phenotype testing showed all strains exhibited some level of phosphine resistance with a maximum level of 196 fold. Sequencing and genetic testing of seven field-collected strains showed that all of them carried a strong resistance allele in at the rph2 locus similar to the one previously reported. Our results show that strong resistance to phosphine is common in Turkish strains of T. castaneum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La presente investigación se planteó reemplazar el uso de insecticidas sintéticos, formulando un champú bioinsecticida de aplicación canina mediante la acción biocida del aceite esencial deAmbrosia arborescens Mill (Altamisa). La planta se recolectó en las laderas del rio Tomebamba, cercanas al Campus Balzay de la Universidad de Cuenca Parroquia San Joaquín. La recolección se realizó durante los meses de Enero a Marzo del 2016. El desarrollo y formulación del producto se realizó en el Laboratorio de Biotecnología, Facultad de Ciencias Químicas de la Universidad de Cuenca. La obtención del aceite esencial de A. arborescens se realizó mediante hidrodestilación por el método Clevenger, con un rendimiento del 0,14%. La actividad biocida se estableció en un ensayo “in vitro” ante el nematodo Panagrellus redivirus, determinándose la dosis letal (DL50) de 250 uL/mL. Debido a la moderada DL50y bajo rendimiento, se planteó como estrategia, determinar el DL50 del extracto orgánico de A. arborescens, el cual se obtuvo mediante una extracción con metanol, consiguiendo un rendimiento del 2 % y DL50de 31,25 uL/mL. De acuerdo estos resultados se procedió a realizar pruebas en pulgas de perros(Ctenocephalides canis) con el extracto de A. arborescens, estableciendo una efectividad del 100 % a la concentración de 46,875 mg/mL en el periodo de tiempo más corto, siendo esta la dosis aplicada para la formulación del champú. El extracto metanólico de A. arborescens presentó elevada actividad biocida, comparado con el aceite esencial. Esta sustancia activa es promisoria en la formulación de bioinsecticidas para mascotas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Edge effects due to habitat loss and fragmentation have pervasive impacts on many natural ecosystems worldwide. Objective: We aimed to explore whether, in tandem with the resource-based model of edge effects, species feeding-guild and flight-capacity can help explain species responses to an edge. Methods: We used a two-sided edge gradient that extended from 1000 m into native Eucalyptus forest to 316 m into an exotic pine plantation. We used generalised additive models to examine the continuous responses of beetle species, feeding-guild species richness and flight-capable group species richness to the edge gradient and environmental covariates. Results: Phytophagous species richness was directly related to variation in vegetation along the edge gradient. There were more flight-capable species in Eucalyptus forest and more flightless species in exotic pine plantation. Many individual species exhibited multiple-peaked edge-profiles. Conclusions: The resource based model for edge effects can be used in tandem with traits such as feeding-guild and flight-capacity to understand drivers of large scale edge responses. Some trait-groups can show generalisable responses that can be linked with drivers such as vegetation richness and habitat structure. Many trait-group responses, however, are less generalisable and not explained by easily measured habitat variables. Difficulties in linking traits with resources along the edge could be due to unmeasured variation and indirect effects. Some species’ responses reached the limits of the edge gradient demonstrating the need to examine edge effects at large scales, such as kilometres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of a secondary terrestrial lifestyle in diving beetles (Coleoptera: Dytiscidae) has never been analysed in a phylogenetic framework before. Here we study Terradessus caecus Watts, a terrestrial species of the subfamily Hydroporinae endemic to Australia. We infer its phylogenetic placement using Bayesian inference and maximum-likelihood methods based on a multilocus molecular dataset. We also investigate the divergence time estimates of this lineage using a Bayesian relaxed clock approach. Finally, we infer ancestral ecological preferences using a likelihood approach. We recover T. caecus nested in the genus Paroster Sharp with strong support. Therefore, we establish a synonymy for both species of Terradessus with Paroster: Paroster caecus (Watts) n.comb. and Paroster anophthalmus (Brancucci & Monteith) n.comb. Paroster is an endemic Australian genus that has a remarkable number of subterranean species in underground aquifers with highly derived morphologies. Our results highlight one of the most remarkable radiations of aquatic beetles with independent ecological pathways likely linked to palaeoclimatic disruptions in the Neogene. Paroster caecus (Watts) n.comb. originated from a mid-Miocene split following the onset of an aridification episode that has been ongoing to the present day. The deep changes in ecological communities in association with the drying-out of palaeodrainage systems might have pushed this lineage to colonize a new niche in terrestrial habitats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim To measure latitude-related body size variation in field-collected Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) individuals and to conduct common-garden experiments to determine whether such variation is due to phenotypic plasticity or local adaptation. Location Four collection sites from the east coast of Australia were selected for our present field collections: Canberra (latitude 35°19' S), Bangalow (latitude 28°43' S), Beerburrum (latitude 26°58' S) and Lowmead (latitude 24°29' S). Museum specimens collected over the past 100 years and covering the same geographical area as the present field collections came from one state, one national and one private collection. Methods Body size (pronotum width) was measured for 118 field-collected beetles and 302 specimens from collections. We then reared larvae from the latitudinal extremes (Canberra and Lowmead) to determine whether the size cline was the result of phenotypic plasticity or evolved differences (= local adaptation) between sites. Results Beetles decreased in size with increasing latitude, representing a converse Bergmann cline. A decrease in developmental temperature produced larger adults for both Lowmead (low latitude) and Canberra (high latitude) individuals, and those from Lowmead were larger than those from Canberra when reared under identical conditions. Main conclusions The converse Bergmann cline in P. atomaria is likely to be the result of local adaptation to season length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Neopolycystus sp. is the only primary egg parasitoid associated with the pest beetle Paropsis atomaria in subtropical eucalypt plantations, but its impact on its host populations is unknown. The simplified ecosystem represented by the plantation habitat, lack of interspecific competition for host and parasitoid, and the multivoltinism of the host population makes this an ideal system for quantifying the direct and indirect effects of egg parasitism, and hence, effects on host population dynamics. Within-, between- and overall-egg-batch parasitism rates were determined at three field sites over two field seasons, and up to seven host generations. The effect of exposure time (egg batch age), host density proximity to native forest and water sources on egg parasitism rates was also tested. Neopolycystus sp. exerts a significant influence on P. atomaria populations in Eucalyptus cloeziana. plantations in south-eastern Queensland, causing the direct (13%) and indirect (15%) mortality of almost one-third of all eggs in the field. Across seasons and generations, 45% of egg batches were parasitised, with a within-batch parasitism rate of around 30%. Between-batch parasitism increased up to 5–6 days after oviposition in the field, although within-batch parasitism rates generally did not. However, there were few apparent patterns to egg parasitism, with rates often varying significantly between sites and seasons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasive species provide excellent study systems to evaluate the ecological and evolutionary processes that contribute to the colonization of novel environments. While the ecological processes that contribute to the successful establishment of invasive plants have been studied in detail, investigation of the evolutionary processes involved in successful invasions has only recently received attention. In particular, studies investigating the genomic and gene expression differences between native and introduced populations of invasive species are just beginning and are required if we are to understand how plants become invasive. In the current issue of Molecular Ecology, Hodgins et al. () tackle this unresolved question, by examining gene expression differences between native and introduced populations of annual ragweed, Ambrosia artemisiifolia. The study identifies a number of potential candidate genes based on gene expression differences that may be responsible for the success of annual ragweed in its introduced range. Furthermore, genes involved in stress response are over-represented in the differentially expressed gene set. Future experiments could use functional studies to test whether changes in gene expression at these candidate genes do in fact underlie changes in growth characteristics and reproductive output observed in this and other invasive species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phylogenetic relationships of the beetle superfamily Tenebrionoidea are investigated using the most comprehensive genetic data set compiled to date. With ∼34,000 described species in approximately 1250 genera and 28 families, Tenebrionoidea represent one of the most diverse and species-rich superfamilies of beetles. The interfamilial relationships of the Tenebrionoidea are poorly known; previous morphological and molecular phylogenies recovered few well-supported and often conflicting relationships between families. Here we present a molecular phylogeny of Tenebrionoidea based on genes commonly used to resolve family and superfamily-level phylogenies of beetles (18S, 28S, 16S, 12S, tRNA Val and COI). The alignment spanned over 6.5 KB of DNA sequence and over 300 tenebrionoid genera from 24 of the 28 families were sampled. Maximum Likelihood and Bayesian analysis could not resolve deeper level divergences within the superfamily and very few relationships between families were supported. Increasing gene coverage in the alignment by removing taxa with missing data did not improve clade support but when rogue taxa were removed increased resolution was recovered. Investigation of signal strength suggested conflicting phylogenetic signal was present in the standard genes used for beetle phylogenetics, even when rogue taxa were removed. Our study of Tenebrionoidea highlights that even with relatively comprehensive taxon sampling within a lineage, this standard set of genes is unable to resolve relationships within this superfamily.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coleoptera is the most diverse group of insects with over 360,000 described species divided into four suborders: Adephaga, Archostemata, Myxophaga, and Polyphaga. In this study, we present six new complete mitochondrial genome (mtgenome) descriptions, including a representative of each suborder, and analyze the evolution of mtgenomes from a comparative framework using all available coleopteran mtgenomes. We propose a modification of atypical cox1 start codons based on sequence alignment to better reflect the conservation observed across species as well as findings of TTG start codons in other genes. We also analyze tRNA-Ser(AGN) anticodons, usually GCU in arthropods, and report a conserved UCU anticodon as a possible synapomorphy across Polyphaga. We further analyze the secondary structure of tRNA-Ser(AGN) and present a consensus structure and an updated covariance model that allows tRNAscan-SE (via the COVE software package) to locate and fold these atypical tRNAs with much greater consistency. We also report secondary structure predictions for both rRNA genes based on conserved stems. All six species of beetle have the same gene order as the ancestral insect. We report noncoding DNA regions, including a small gap region of about 20 bp between tRNA-Ser(UCN) and nad1 that is present in all six genomes, and present results of a base composition analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Head and neck cancers (HNCs) represent a significant and ever-growing burden to the modern society, mainly due to the lack of early diagnostic methods. A significant number of HNCs is often associated with drinking, smoking, chewing beetle nut, and human papilloma virus (HPV) infections. We have analyzed DNA methylation patterns in tumor and normal tissue samples collected from head and neck squamous cell carcinoma (HNSCC) patients who were smokers. We have identified novel methylation sites in the promoter of the mediator complex subunit 15 (MED15/PCQAP) gene (encoing a co-factor important for regulation of transcription initiation for promoters of many genes), hypermethylated specifically in tumor cells. Two clusters of CpG dinucleotides methylated in tumors, but not in normal tissue from the same patients, were identified. These CpG methylation events in saliva samples were further validated in a separate cohort of HNSCC patients (who developed cancer due to smoking or HPV infections) and healthy controls using methylation-specific PCR (MSP). We used saliva as a biological medium because of its non-invasive nature, close proximity to the tumors, easiness and it is an economically viable option for large-scale screening studies. The methylation levels for the two identified CpG clusters were significantly different between the saliva samples collected from healthy controls and HNSCC individuals (Welch's t-test returning P, 0.05 and Mann-Whitney test P, 0.01 for both). The developed MSP assays also provided a good discriminative ability with AUC values of 0.70 (P, 0.01) and 0.63 (P, 0.05). The identified novel CpG methylation sites may serve as potential non-invasive biomarkers for detecting HNSCC. © the authors.