948 resultados para receptors, adrenergic
Resumo:
Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer
Resumo:
Human behavior appears to be regulated in part by noradrenergic transmission since antidepressant drugs modify the number and function of (beta)-adrenergic receptors in the central nervous system. Affective illness is also known to be associated with the endocrine system, particularly the hypothalamic-pituitary-adrenal axis. The aim of the present study was to determine whether hormones, in particular adrencorticotrophin (ACTH) and corticosterone, may influence behavior by regulating brain noradrenergic receptor function.^ Chronic treatment with ACTH accelerated the increase or decrease in rat brain (beta)-adrenergic receptor number induced by a lesion of the dorsal noradrenergic bundle or treatment with the antidepressant imipramine. Chronic administration of ACTH alone had no effect on (beta)-receptor number although it reduced norepinephrine stimulated cyclic AMP accumulation in brain slices. Treatment with imipramine also reduced the cyclic AMP response to norepinephrine but was accompanied by a decrease in (beta)-adrenergic receptor number. Both the imipramine and ACTH treatments reduced the affinity of (beta)-adrenergic receptors for norepinephrine, but only the antidepressant modified the potency of the neurotransmitter to stimulate second messenger production. Neither ACTH nor imipramine treatment altered Gpp(NH)p- or fluoride-stimulated adenylate cyclase, cyclic AMP, cyclic GMP, or cyclic GMP-stimulated cyclic AMP phosphodiesterase, or the activity of the guanine nucleotide binding protein (Gs). These findings suggested that post-receptor components of the cyclic nucleotide generating system are not influenced by the hormone or antidepressant. This conclusion was verified by the finding that neither treatment altered adenosine-stimulated cyclic AMP accumulation in brain tissue.^ A detailed examination of the (alpha)- and (beta)-adrenergic receptor components of norepinephrine-stimulated cyclic AMP production revealed that ACTH, but not imipramine, administration reduced the contribution of the (alpha)-receptor mediated response. Like ACTH treatment, corticosterone diminished the (alpha)-adrenergic component indicating that adrenal steroids probably mediate the neurochemical responses to ACTH administration. The data indicate that adrenal steroids and antidepressants decrease noradrenergic receptor function by selectively modifying the (alpha)- and (beta)-receptor components. The functional similarity in the action of the steroid and antidepressants suggests that adrenal hormones normally contribute to the maintenance of receptor systems which regulate affective behavior in man. ^
Resumo:
βarrestins mediate the desensitization of the β2-adrenergic receptor (β2AR) and many other G protein-coupled receptors (GPCRs). Additionally, βarrestins initiate the endocytosis of these receptors via clathrin coated-pits and interact directly with clathrin. Consequently, it has been proposed that βarrestins serve as clathrin adaptors for the GPCR family by linking these receptors to clathrin lattices. AP-2, the heterotetrameric clathrin adaptor protein, has been demonstrated to mediate the internalization of many types of plasma membrane proteins other than GPCRs. AP-2 interacts with the clathrin heavy chain and cytoplasmic domains of receptors such as those for epidermal growth factor and transferrin. In the present study we demonstrate the formation of an agonist-induced multimeric complex containing a GPCR, βarrestin 2, and the β2-adaptin subunit of AP-2. β2-Adaptin binds βarrestin 2 in a yeast two-hybrid assay and coimmunoprecipitates with βarrestins and β2AR in an agonist-dependent manner in HEK-293 cells. Moreover, β2-adaptin translocates from the cytosol to the plasma membrane in response to the β2AR agonist isoproterenol and colocalizes with β2AR in clathrin-coated pits. Finally, expression of βarrestin 2 minigene constructs containing the β2-adaptin interacting region inhibits β2AR endocytosis. These findings point to a role for AP-2 in GPCR endocytosis, and they suggest that AP-2 functions as a clathrin adaptor for the endocytosis of diverse classes of membrane receptors.
Resumo:
Heart failure is accompanied by severely impaired β-adrenergic receptor (βAR) function, which includes loss of βAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of βAR function is agonist-stimulated receptor phosphorylation by the βAR kinase (βARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in βAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of βARK1 or the β2AR were mated into a genetic model of murine heart failure (MLP−/−). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP−/− and MLP−/−/β2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP−/−/βARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP−/−/βARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP−/− mice but less than controls. Importantly, heightened βAR desensitization in the MLP−/− mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the βARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal βAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit βARK1 as a novel mode of therapy.
Resumo:
Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the β2-adrenergic receptor, in this paper we construct an activating metal-ion site between the amine-binding Asp-113 in TM-III—or a His residue introduced at this position—and a Cys residue substituted for Asn-312 in TM-VII. No increase in constitutive activity was observed in the mutant receptors. Signal transduction was activated in the mutant receptors not by normal catecholamine ligands but instead either by free zinc ions or by zinc or copper ions in complex with small hydrophobic metal-ion chelators. Chelation of the metal ions by small hydrophobic chelators such as phenanthroline or bipyridine protected the cells from the toxic effect of, for example Cu2+, and in several cases increased the affinity of the ions for the agonistic site. Wash-out experiments and structure–activity analysis indicated, that the high-affinity chelators and the metal ions bind and activate the mutant receptor as metal ion guided ligand complexes. Because of the well-understood binding geometry of the small metal ions, an important distance constraint has here been imposed between TM-III and -VII in the active, signaling conformation of 7TM receptors. It is suggested that atoxic metal-ion chelator complexes could possibly in the future be used as generic, pharmacologic tools to switch 7TM receptors with engineered metal-ion sites on or off at will.
Resumo:
Several G-protein coupled receptors, such as the β1-adrenergic receptor (β1-AR), contain polyproline motifs within their intracellular domains. Such motifs in other proteins are known to mediate protein–protein interactions such as with Src homology (SH)3 domains. Accordingly, we used the proline-rich third intracellular loop of the β1-AR either as a glutathione S-transferase fusion protein in biochemical “pull-down” assays or as bait in the yeast two-hybrid system to search for interacting proteins. Both approaches identified SH3p4/p8/p13 (also referred to as endophilin 1/2/3), a SH3 domain-containing protein family, as binding partners for the β1-AR. In vitro and in human embryonic kidney (HEK) 293 cells, SH3p4 specifically binds to the third intracellular loop of the β1-AR but not to that of the β2-AR. Moreover, this interaction is mediated by the C-terminal SH3 domain of SH3p4. Functionally, overexpression of SH3p4 promotes agonist-induced internalization and modestly decreases the Gs coupling efficacy of β1-ARs in HEK293 cells while having no effect on β2-ARs. Thus, our studies demonstrate a role of the SH3p4/p8/p13 protein family in β1-AR signaling and suggest that interaction between proline-rich motifs and SH3-containing proteins may represent a previously underappreciated aspect of G-protein coupled receptor signaling.
Resumo:
We previously demonstrated that α1B-adrenergic receptor (AR) gene transcription, mRNA, and functionally coupled receptors increase during 3% O2 exposure in aorta, but not in vena cava smooth muscle cells (SMC). We report here that α1BAR mRNA also increases during hypoxia in liver and lung, but not heart and kidney. A single 2.7-kb α1BAR mRNA was detected in aorta and vena cava during normoxia and hypoxia. The α1BAR 5′ flanking region was sequenced to −2,460 (relative to ATG +1). Transient transfection experiments identify the minimal promoter region between −270 and −143 and sequence between −270 and −248 that are required for transcription of the α1BAR gene in aorta and vena cava SMC during normoxia and hypoxia. An ATTAAA motif within this sequence specifically binds aorta, vena cava, and DDT1MF-2 nuclear proteins, and transcription primarily initiates downstream of this motif at approximately −160 in aorta SMC. Sequence between −837 and −273 conferred strong hypoxic induction of transcription in aorta, but not in vena cava SMC, whereas the cis-element for the transcription factor, hypoxia-inducible factor 1, conferred hypoxia-induced transcription in both aorta and vena cava SMC. These data identify sequence required for transcription of the α1BAR gene in vascular SMC and suggest the atypical TATA-box, ATTAAA, may mediate this transcription. Hypoxia-sensitive regions of the α1BAR gene also were identified that may confer the differential hypoxic increase in α1BAR gene transcription in aorta, but not in vena cava SMC.
Resumo:
Cardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring β-adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular β-adrenergic signaling defects including down-regulation of myocardial β-adrenergic receptors (β-ARs), functional β-AR uncoupling, and an up-regulation of the β-AR kinase (βARK1). Adenoviral-mediated gene transfer of the human β2-AR or an inhibitor of βARK1 to these failing myocytes led to the restoration of β-AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of βARK1 activity in the heart.
Resumo:
The β-adrenergic receptor kinase 1 (βARK1) is a member of the G protein-coupled receptor kinase (GRK) family that mediates the agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. We have cloned and disrupted the βARK1 gene in mice by homologous recombination. No homozygote βARK1−/− embryos survive beyond gestational day 15.5. Prior to gestational day 15.5, βARK1−/− embryos display pronounced hypoplasia of the ventricular myocardium essentially identical to the “thin myocardium syndrome” observed upon gene inactivation of several transcription factors (RXRα, N-myc, TEF-1, WT-1). Lethality in βARK1−/− embryos is likely due to heart failure as they exhibit a >70% decrease in cardiac ejection fraction determined by direct in utero intravital microscopy. These results along with the virtual absence of endogenous GRK activity in βARK1−/− embryos demonstrate that βARK1 appears to be the predominant GRK in early embryogenesis and that it plays a fundamental role in cardiac development.
Resumo:
G protein-coupled receptor activation leads to the membrane recruitment and activation of G protein-coupled receptor kinases, which phosphorylate receptors and lead to their inactivation. We have identified a novel G protein-coupled receptor kinase-interacting protein, GIT1, that is a GTPase-activating protein (GAP) for the ADP ribosylation factor (ARF) family of small GTP-binding proteins. Overexpression of GIT1 leads to reduced β2-adrenergic receptor signaling and increased receptor phosphorylation, which result from reduced receptor internalization and resensitization. These cellular effects of GIT1 require its intact ARF GAP activity and do not reflect regulation of GRK kinase activity. These results suggest an essential role for ARF proteins in regulating β2-adrenergic receptor endocytosis. Moreover, they provide a mechanism for integration of receptor activation and endocytosis through regulation of ARF protein activation by GRK-mediated recruitment of the GIT1 ARF GAP to the plasma membrane.
Resumo:
The frizzled gene family of putative Wnt receptors encodes proteins that have a seven-transmembrane-spanning motif characteristic of G protein-linked receptors, though no loss-of-function studies have demonstrated a requirement for G proteins for Frizzled signaling. We engineered a Frizzled-2 chimera responsive to β-adrenergic agonist by using the ligand-binding domains of the β2-adrenergic receptor. The expectation was that the chimera would be sensitive both to drug-mediated activation and blockade, thereby circumventing the problem of purifying soluble and active Wnt ligand to activate Frizzled. Expression of the chimera in zebrafish embryos demonstrated isoproterenol (ISO)-stimulated, propranolol-sensitive calcium transients, thereby confirming the β-adrenergic nature of Wnt signaling by the chimeric receptor. Because F9 embryonic teratocarcinoma cells form primitive endoderm after stable transfection of Frizzled-2 chimera and stimulation with ISO, they were subject to depletion of G protein subunits. ISO stimulation of endoderm formation of F9 stem cells expressing the chimeric receptor was blocked by pertussis toxin and by oligodeoxynucleotide antisense to Gαo, Gαt2, and Gβ2. Our results demonstrate the requirement of two pertussis toxin-sensitive G proteins, Gαo and Gαt, for signaling by the Frizzled-2 receptor.
Resumo:
The cytoplasmic C terminus of the β2-adrenergic receptor and many other G protein-coupled receptors contains a dileucine sequence that has been implicated in endosome/lysosome targeting of diverse proteins. In the present study, we provide evidence for an essential role of this motif in the agonist-induced internalization of the β2-adrenergic receptor. Mutation of Leu-339 and/or Leu-340 to Ala caused little changes in surface expression, ligand binding, G protein coupling, and signaling to adenylyl cyclase, when these receptors were transiently or stably expressed in CHO or HEK-293 cells. However, agonist-induced receptor internalization was markedly impaired in the L339,340A double mutant and reduced in the two single mutants. This impairment in receptor internalization was seen by using various approaches to determine internalization: binding of hydrophobic vs. hydrophilic ligands, loss of surface β2-adrenergic receptor immunoreactivity, and immunofluorescence microscopy. The selective effects of these mutations suggest that the C-terminal dileucine motif is involved in agonist-induced internalization of the β2-adrenergic receptor.
Resumo:
Chemotaxis is mediated by activation of seven-transmembrane domain, G protein-coupled receptors, but the signal transduction pathways leading to chemotaxis are poorly understood. To identify G proteins that signal the directed migration of cells, we stably transfected a lymphocyte cell line (300-19) with G protein-coupled receptors that couple exclusively to Gαq (the m3 muscarinic receptor), Gαi (the κ-opioid receptor), and Gαs (the β-adrenergic receptor), as well as the human thrombin receptor (PAR-1) and the C-C chemokine receptor 2B. Cells expressing receptors that coupled to Gαi, but not to Gαq or Gαs, migrated in response to a concentration gradient of the appropriate agonist. Overexpression of Gα transducin, which binds to and inactivates free Gβγ dimers, completely blocked chemotaxis although having little or no effect on intracellular calcium mobilization or other measures of cell signaling. The identification of Gβγ dimers as a crucial intermediate in the chemotaxis signaling pathway provides further evidence that chemotaxis of mammalian cells has important similarities to polarized responses in yeast. We conclude that chemotaxis is dependent on activation of Gαi and the release of Gβγ dimers, and that Gαi-coupled receptors not traditionally associated with chemotaxis can mediate directed migration when they are expressed in hematopoietic cells.
Resumo:
Acting through a number of distinct pathways, many G protein-coupled receptors (GPCRs) activate the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cascade. Recently, it has been shown that in some cases, clathrin-mediated endocytosis is required for GPCR activation of the ERK/MAPK cascade, whereas in others it is not. Accordingly, we compared ERK activation mediated by a GPCR that does not undergo agonist-stimulated endocytosis, the α2A adrenergic receptor (α2A AR), with ERK activation mediated by the β2 adrenergic receptor (β2 AR), which is endocytosed. Surprisingly, we found that in COS-7 cells, ERK activation by the α2A AR, like that mediated by both the β2 AR and the epidermal growth factor receptor (EGFR), is sensitive to mechanistically distinct inhibitors of clathrin-mediated endocytosis, including monodansylcadaverine, a mutant dynamin I, and a mutant β-arrestin 1. Moreover, we determined that, as has been shown for many other GPCRs, both α2A and β2 AR-mediated ERK activation involves transactivation of the EGFR. Using confocal immunofluorescence microscopy, we found that stimulation of the β2 AR, the α2A AR, or the EGFR each results in internalization of a green fluorescent protein-tagged EGFR. Although β2 AR stimulation leads to redistribution of both the β2 AR and EGFR, activation of the α2A AR leads to redistribution of the EGFR but the α2A AR remains on the plasma membrane. These findings separate GPCR endocytosis from the requirement for clathrin-mediated endocytosis in EGFR transactivation-mediated ERK activation and suggest that it is the receptor tyrosine kinase or another downstream effector that must engage the endocytic machinery.
Resumo:
Neuropeptide Y (NPY) has been shown to participate in the cardiovascular response mediated by the sympathetic system. In this report, we investigate the growth factor properties of NPY on cardiac myocytes. Mitogen-activated protein kinases (MAPK) are key signaling molecules in the transduction of trophic signals. Therefore, the role of NPY in inducing MAPK activation was studied in mouse neonatal cardiomyocytes. Exposure of neonatal cardiomyocytes to either NPY, phenylephrine, or angiotensin II induces a rapid phosphorylation of the extracellular responsive kinase, the c-jun N-terminal kinase, and the p38 kinase as well as an activation of protein kinase C (PKC). Moreover, NPY potentiates phenylephrine-induced MAPK and PKC stimulation. In contrast, NPY has no synergistic effect on angiotensin II-stimulated MAPK phosphorylation or PKC activity. NPY effects are pertussis toxin-sensitive and calcium-independent and are mediated by NPY Y5 receptors. Taken together, these results suggest that NPY, via Gi protein-coupled NPY Y5 receptors, could participate in the development of cardiac hypertrophy during chronic sympathetic stimulation by potentiating α-adrenergic signals.