640 resultados para ration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective was to determine the concentration of total selenium (Se) and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys) in post mortem tissues of beef cattle offered diets containing graded additions of selenized enriched yeast (SY) [Saccharomyces cerevisae CNCM I-3060]), or sodium selenite (SS). Oxidative stability and tissue glutathione peroxidase (GSH-Px) activity of edible muscle tissue were assessed 10 d post-mortem. Thirty two beef cattle were offered, for a period of 112 d, a total mixed ration which had either been supplemented with SY (0, 0.15 or 0.35 mg Se/kg DM) or SS (0.15 mg Se/kg DM). At enrollment (0 d) and at 28, 56, 84 and 112 d following enrollment, blood samples were taken for Se and Se species determination, as well as whole blood GSH-Px activity. At the end of the study beef cattle were euthanized and samples of heart, liver, kidney, and skeletal muscle (LM and psoas major) were retained for Se and Se species determination. Tissue GSH-Px activity and thiobarbituric acid reactive substances (TBARS) were determined in skeletal muscle tissue (LM only). The incorporation into the diet of ascending concentrations of Se as SY increased whole blood total Se and the proportion of total Se comprised as SeMet, as well as GSH-Px activity. There was also a dose dependant response to the graded addition of SY on total Se and proportion of total Se as SeMet in all tissues and GSH-Px activity in skeletal muscle tissue. Furthermore, total Se concentration of whole blood and tissues was greater in those animals offered SY when compared with those receiving a comparable dose of SS, indicating an improvement in Se availability and tissue Se retention. Likewise, GSH-Px activity in whole blood and LM was greater in those animals offered SY when compared with those receiving a comparable dose of SS. However, these increases in tissue total Se and GSH-Px activity appeared to have little or no effect in meat oxidative stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective was to determine the concentration of total selenium (Se) and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys), as well as meat quality in terms of oxidative stability in post mortem tissues of lambs offered diets with an increasing dose rate of selenized enriched yeast (SY), or sodium selenite (SS). Fifty lambs were offered, for a period of 112 d, a total mixed ration which had either been supplemented with SY (0, 0.11, 0.21 or 0.31 mg/kg DM to give total Se contents of 0.19, 0.3, 0.4 and 0.5 mg Se/kg DM for treatments T1, T2, T3 and T4, respectively) or SS (0.11 mg/kg DM to give 0.3 mg Se/kg DM total Se [T5]). At enrolment and at 28, 56, 84 and 112 d following enrolment, blood samples were taken for Se and Se species determination, as well as glutathione peroxidase (GSH-Px) activity. At the end of the study lambs were euthanased and samples of heart, liver, kidney, and skeletal muscle were retained for Se and Se species determination. Tissue GSH-Px activity and thiobarbituric acid reactive substances (TBARS) were determined in Longissimus Thoracis. The incorporation into the diet of ascending concentrations of Se as SY increased whole blood total Se and the proportion of total Se comprised as SeMet, and erythrocyte GSH-Px activity. Comparable doses of SS supplementation did not result in significant differences between these parameters. With the exception of kidney tissue, all other tissues showed a dose dependant response to increasing concentrations of dietary SY, such that total Se and SeMet increased. Selenium content of Psoas Major was higher in animals fed SY when compared to a similar dose of SS, indicating improvements in Se availability and retention. There were no significant treatment effects on meat quality assessments GHS-Px and TBARS, reflecting the lack of difference in the proportion of total Se that was comprised as SeCys. However, oxidative stability improved marginally with ascending tissue Se content, providing an indication of a linear dose response whereby TBARS improved with ascending SY inclusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substituting grass silage with maize silage in forage mixtures may result in one forage influencing the nutritive value of another in terms of whole tract nutrient digestibility and N utilisation. This experiment investigated effects of four forage combinations being, grass silage (G); 67 g/100 g grass silage + 33 g/100 g maize silage (GGM); 67 g/100 g maize silage + 33 g/100 g grass silage (MMG); maize silage (M). All diets were formulated to be isonitrogenous (22.4 g N/kg dry matter [DM]) using a concentrate mixture. Ration digestibility and N balance was determined using 7 Holstein Friesian steers (mean body weight 411.0 +/- 120.9 kg) in a cross-over design. Inclusion of maize silage in the diet had a positive linear effect on forage and total DM intake (P = 0.001), and on apparent DM and organic matter digestibility (both P = 0.048). Regardless of the silage ratio used, the metabolisable energy concentration of maize silage was calculated to be higher than that of grass silage (P = 0.058), and linearly related to the relative proportions of the two silages in the forage mixture. Inclusion of maize silage in the diet resulted in a linear decline in the apparent digestibility of starch (P = 0.022), neutral detergent fibre (P < 0.001) and acid detergent fibre (P = 0.003). Nitrogen retention, expressed as amount retained per day or in terms of body weight (g/100 kg) increased linearly with maize inclusion (P = 0.047 and 0.046, respectively). Replacing grass silage with maize silage caused linear responses according to the proportions of each forage in the diet, and that there were no associative effects of combining forages. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives were to compare the chemical composition, nutritive value, feed intake, milk production and composition, and presence in milk of transgenic DNA and the encoded protein Cry1Ab when corn silages containing 2 transgenes (2GM: herbicide tolerance: mepsps and insect resistance: cry1Ab) were fed as part of a standard total mixed ration (TMR) compared with a near isogenic corn silage ( C) to 8 multiparous lactating Holstein dairy cows in a single reversal design study. Cows were fed a TMR ration ad libitum and milked twice daily. Diets contained [ dry matter (DM) basis] 45% corn silage, 10% alfalfa hay, and 45% concentrate (1.66 Mcal of net energy for lactation/kg of DM, 15.8% crude protein, 35% neutral detergent fiber, and 4.1% fat). Each period was 28-d long. During the last 4 d of each period, feed intake and milk production data were recorded and milk samples taken for compositional analysis, including the presence of transgenic DNA and Cry1Ab protein. There was no significant difference in the chemical composition between C and 2GM silages, and both were within the expected range (37.6% DM, 1.51 Mcal of net energy for lactation/kg, 8.6% crude protein, 40% neutral detergent fiber, 19.6% acid detergent fiber, pH 3.76, and 62% in vitro DM digestibility). Cows fed the 2GM silage produced milk with slightly higher protein (3.09 vs. 3.00%), lactose ( 4.83 vs. 4.72%) and solids-not-fat (8.60 vs. 8.40%) compared with C. However, the yield (kg/d) of milk (36.5), 3.5% fat-corrected milk (34.4), fat (1.151), protein (1.106), lactose (1.738), and solids-not-fat ( 3.094), somatic cell count (log(10): 2.11), change in body weight (+ 7.8 kg), and condition score (+ 0.09) were not affected by type of silage, indicating no overall production difference. All milk samples were negative for the presence of transgenic DNA from either trait or the Cry1Ab protein. Results indicate that the 2GM silage modified with 2 transgenes did not affect nutrient composition of the silages and had no effect on animal performance and milk composition. No transgenic DNA and Cry1Ab protein were detected in milk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential to increase the concentrations of n-3 polyunsaturated fatty acids (PUFAs) in milk fat was investigated by studying the effects of feeding a xylose-treated, whole cracked linseed supplement ( rich in alpha-linolenic acid) to dairy cows. Also the effect of increasing the dietary intake of vitamin E on the vitamin E status of milk was investigated. The effect of pasteurisation on milk fatty acid composition was also examined. Using a 3 x 2 factorial design, a total of 60 Holstein dairy cows were fed a total mixed ration based on grass silage supplemented with one of three levels of whole cracked linseed (78, 142 or 209 g . kg(-1) diet dry matter (DM); designated LL, ML or HL, respectively) in combination with one of two levels of additional dietary vitamin E intake ( 6 or 12 g vitamin E . animal(-1) . day(-1); designated LE or HE, respectively). Increasing lipid supplementation reduced (P < 0.01) diet DM intake and milk yield, and increased (P < 0.001) the overall content of oleic, vaccenic, alpha-linolenic and conjugated linoleic acids, and total PUFAs and monounsaturated fatty acids (MUFA). Myristic and palmitic acids in milk fat were reduced ( P < 0.001) through increased lipid supplementation. While α-linolenic acid concentrations were substantially increased this acid only accounted for 0.02 of total fatty acids in milk at the highest level of supplementation (630 g α-linolenic acid &BULL; animal(-1) &BULL; day(-1) for HL). Conjugated linoleic acid concentrations in milk fat were almost doubled by increasing the level of lipid supplementation (8.9, 10.4 and 16.1 g &BULL; kg(-1) fatty acids for LL, ML and HL, respectively). Although milk vitamin E contents were generally increased there was no benefit (P > 0.05) of increasing vitamin E intake from 6 to 12 g . animal(-1) . day(-1). The fatty acid composition of milk was generally not affected by pasteurisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Existing data on animal health and welfare in organic livestock production systems in the European Community countries are reviewed in the light of the demands and challenges of the recently implemented EU regulation on organic livestock production. The main conclusions and recommendations of a three-year networking project on organic livestock production are summarised and the future challenges to organic livestock production in terms of welfare and health management are discussed. The authors conclude that, whilst the available data are limited and the implementation of the EC regulation is relatively recent, there is little evidence to suggest that organic livestock management causes major threats to animal health and welfare in comparison with conventional systems. There are, however, some well-identified areas, like parasite control and balanced ration formulation, where efforts are needed to find solutions that meet with organic standard requirements and guarantee high levels of health and welfare. It is suggested that, whilst organic standards offer an implicit framework for animal health and welfare management, there is a need to solve apparent conflicts between the organic farming objectives in regard to environment, public health, farmer income and animal health and welfare. The key challenges for the future of organic livestock production in Europe are related to the feasibility of implementing improved husbandry inputs and the development of evidence-based decision support systems for health and feeding management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Even though extensive research has examined the role of nutrition on milk fat composition, there is less information on the impact of forages on milk fatty acid (FA) composition. In the current study, the effect of replacing grass silage (GS) with maize silage (MS) as part of a total mixed ration on animal performance and milk FA composition was examined using eight multiparous mid-lactation cows in a replicated 4 X 4 Latin square with 28-day experimental periods. Four treatments comprised the stepwise replacement of GS with MS (0, 160, 334 and 500 g/kg dry matter (DM)) in diets containing a 54:46 forage: concentrate ratio on a DM basis. Replacing GS with MS increased (P < 0.001) the DM intake, milk yield and milk protein content. Incremental replacement of GS with MS in the diet enhanced linearly (P < 0.001) the proportions of 6:0-14:0, decreased (P < 0.01) the 16:0 concentrations, but had no effect on the total milk fat saturated fatty acid content. Inclusion of MS altered the distribution of trans-18:1 isomers and enhanced (P < 0.05) total trans monounsaturated fatty acid and total conjugated linoleic acid content. Milk total n-3 polyunsaturated fatty acid (PUFA) content decreased with higher amounts of MS in the diet and n-6 PUFA concentration increased, leading to an elevated n-6: n-3 PUFA ratio. Despite some beneficial changes associated with the replacement of GS with MS, the overall effects on milk FA composition would not be expected to substantially improve long-term human health. However the role of forages on milk fat composition must also be balanced against the increases in total milk and protein yield on diets containing higher proportions of MS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous experiments from our group have demonstrated that abomasal infusion of unsaturated free fatty acids (FFA) markedly decreases dry matter intake (DMI) in dairy cows. In contrast, experiments from other groups have noted smaller decreases in DMI when unsaturated triglycerides (TG) were infused postruminally. Our hypothesis was that unsaturated FFA would be more potent inhibitors of DMI than an equivalent amount of unsaturated TG. Four Holstein cows in late lactation were used in a single reversal design. Cows were fed a total mixed ration containing (DM basis) 23% alfalfa silage, 23% corn silage, 40.3% ground shelled corn, and 10.5% soybean meal. Two cows received soy FFA (UFA; 0, 200, 400, 600 g/d) and 2 received soy oil (TG) in the same amounts; cows then were switched to the other lipid source. Cows were abomasally infused with each amount for 5-d periods. The daily amount of lipid was pulse-dosed in 4 equal portions at 0600, 1000, 1700, and 2200 h; no emulsifiers were used and there was no sign of digestive disturbance. Both lipid sources linearly decreased DMI, with a significant interaction between lipid source and amount. Slope-ratio analysis indicated that UFA were about 2 times more potent in decreasing DMI than were TG. Decreased DMI led to decreased milk production. Milk fat content was increased linearly by lipid infusion. Milk fat yield decreased markedly for UFA infusion but was relatively unaffected by infusion of TG. Contents of short- and medium-chain fatty acids in milk fat decreased as the amount of either infusate increased. Contents of C-18:2 and C18: 3 in milk fat were increased linearly by abomasal infusion of either fat source; cis-9 C-18:1 was unaffected. Transfer of infused C18: 2 to milk fat was 35.6, 42.5, and 27.8% for 200, 400, and 600 g/d of UFA, and 34.3, 39.6, and 34.0% for respective amounts of TG. Glucagon-like peptide-1 (7-36) amide (GLP-1) concentration in plasma significantly increased as DMI decreased with increasing infusion amount of UFA or TG. Plasma concentration of cholecystokinin-octapeptide (CCK-8) was unaffected by lipid infusion. These results indicate that unsaturated FFA reaching the duodenum are more potent inhibitors of DMI than are unsaturated TG; the effect may be at least partially mediated by GLP-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective was to determine the presence or absence of transgenic and endogenous plant DNA in ruminal fluid, duodenal digesta, milk, blood, and feces, and if found, to determine fragment size. Six multiparous lactating Holstein cows fitted with ruminal and duodenal cannulas received a total mixed ration. There were two treatments (T). In T1, the concentrate contained genetically modified (GM) soybean meal (cp4epsps gene) and GM corn grain (cry1a[b] gene), whereas T2 contained the near isogenic non-GM counterparts. Polymerase chain reaction analysis was used to determine the presence or absence of DNA sequences. Primers were selected to amplify small fragments from single-copy genes (soy lectin and corn high-mobility protein and cp4epsps and cry1a[b] genes from the GM crops) and multicopy genes (bovine mitochondrial cytochrome b and rubisco). Single-copy genes were only detected in the solid phase of rumen and duodenal digesta. In contrast, fragments of the rubisco gene were detected in the majority of samples analyzed in both the liquid and solid phases of ruminal and duodenal digesta, milk, and feces, but rarely in blood. The size of the rubisco gene fragments detected decreased from 1176 bp in ruminal and duodenal digesta to 351 bp in fecal samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective was to determine the presence or absence of transgenic and endogenous plant DNA in ruminal fluid, duodenal digesta, milk, blood, and feces, and if found, to determine fragment size. Six multiparous lactating Holstein cows fitted with ruminal and duodenal cannulas received a total mixed ration. There were two treatments (T). In T1, the concentrate contained genetically modified (GM) soybean meal (cp4epsps gene) and GM corn grain (cry1a[b] gene), whereas T2 contained the near isogenic non-GM counterparts. Polymerase chain reaction analysis was used to determine the presence or absence of DNA sequences. Primers were selected to amplify small fragments from single-copy genes (soy lectin and corn high-mobility protein and cp4epsps and cry1a[b] genes from the GM crops) and multicopy genes (bovine mitochondrial cytochrome b and rubisco). Single-copy genes were only detected in the solid phase of rumen and duodenal digesta. In contrast, fragments of the rubisco gene were detected in the majority of samples analyzed in both the liquid and solid phases of ruminal and duodenal digesta, milk, and feces, but rarely in blood. The size of the rubisco gene fragments detected decreased from 1176 bp in ruminal and duodenal digesta to 351 bp in fecal samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data from 60 multiparous Holstein cows were used in a 12-wk continuous design feeding trial. Cows were allocated to 1 of 4 experimental treatments (T1 to T4). In T1 and T2, the total mixed ration (TMR) contained either corn silage from the genetically modified (GM) variety Chardon Liberty Link, which is tolerant to the herbicide glufosinate ammonium, or its near isogenic nonGM counterpart, whereas the TMR used in T3 and T4 contained corn silage from the commercially available nonGM varieties Fabius and Antares, respectively. The objectives of the study were to determine if the inserted gene produced a marked effect on chemical composition, nutritive value, feed intake, and milk production, and to determine if transgenic DNA and the protein expressed by the inserted gene could be detected in bovine milk. The nutritive value, fermentation characteristics, mineral content, and amino acid composition of all 4 silages were similar. There were no significant treatment effects on milk yield, milk composition, and yield of milk constituents, and the dry matter (DM) intake of the GM variety was not significantly different from the 2 commercial varieties. However, although the DM intake noted for the nonGM near-isogenic variety was similar to the commercial varieties, it was significantly lower when compared with the GM variety. Polymerase chain reaction analyses of milk samples collected at wk 1, 6, and 12 of the study showed that none of the 90 milk samples tested positive, above a detection limit of 2.5 ng of total genomic DNA/mL of milk, for either tDNA (event T25) or the single-copy endogenous Zea mays gene, alcohol dehydrogenase. Using ELISA assays, the protein expressed by the T25 gene was not detected in milk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sixteen multiparous Holstein cows were used to determine the effects of 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi: 0 vs. 1.26 g/kg of total ration dry matter (DM) and dietary crude protein (CP) concentration [14.7% (low) vs. 16.9% (standard), DM basis] on milk yield and composition using a replicated 4 x 4 Latin square design experiment with 4-wk periods. Cows were fed ad libitum a total mixed ration with a 1: 1 forage-to-concentrate ratio (DM basis), and diets provided an estimated 6.71 and 1.86% lysine and methionine, respectively, in metabolizable protein for the low-protein diet and 6.74 and 1.82% in the standard protein diet. Dry matter intake, milk yield, and composition were measured during wk 4 of each period. There were no effects on DM intake, which averaged 24.7 kg/d. There was an interaction between dietary CP and HMBi for milk yield and 3.5% fat-corrected milk (FCM). Feeding HMBi decreased milk and FCM yield when fed with the low-CP diet but did not affect milk or FCM yield when fed with the standard CP diet. Feeding HMBi increased milk protein concentration regardless of diet CP concentration and increased milk protein yield when added to the standard CP diet but not the low-CP diet. The positive effect of HMBi on milk protein yield was only observed at the standard level of dietary CP, suggesting other factors limited the response to HMBi when dietary protein supply was restricted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our objective was to determine the effect of feeding rumen-inert fats differing in their degree of saturation on dry matter intake (DMI), milk production, and plasma concentrations of insulin, glucagon-like peptide 1 (7-36) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin (CCK) in lactating dairy cows. Four midlactation, primiparous Holstein cows were used in a 4 x 4 Latin square experiment with 2-wk periods. Cows were fed a control mixed ration ad libitum, and treatments were the dietary addition (3.5% of ration dry matter) of 3 rumen-inert fats as sources of mostly saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), or polyunsaturated fatty acids (PUFA). Daily DMI, milk yield, and composition were measured on the last 4 d of each period. Jugular vein blood was collected every 30 min over a 7-h period on d 12 and 14 of each period for analysis of plasma concentrations of hormones, glucose, and nonesterified fatty acids. Feeding fat decreased DMI, and the decrease tended to be greater for MUFA and PUFA compared with SFA. Plasma concentration of GLP-1 increased when fat was fed and was greater for MUFA and PUFA. Feeding fat increased plasma glucose-dependent insulinotropic polypeptide and CCK concentrations and decreased plasma insulin concentration. Plasma CCK concentration was greater for MUFA and PUFA than for SFA and was greater for MUFA than PUFA. Decreases in DMI in cows fed fat were associated with increased plasma concentrations of GLP-1 and CCK and a decreased insulin concentration. The role of these peptides in regulating DMI in cattle fed fat requires further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Milk solids yield in modern dairy cows has increased linearly over the last 50 years, stressing the need for maximal dietary energy intake to allow genetic potential for milk energy yield to be realized with minimal negative effects on health and reproduction. Feeding supplemental starch is a common approach for increasing the energy density of the ration and supplying carbon for meeting the substantial glucose requirement of the higher yielding cow. In this regard, it is a long held belief that feeding starch in forms that increase digestion in the small intestine and glucose absorption will benefit the cow in terms of energetic efficiency and production response, but data supporting this dogma are equivocal. This review will consider the impact of supplemental starch and site of starch digestion on metabolic and production responses of lactating dairy cows, including effects on feed intake, milk yield and composition, nutrient partitioning, the capacity of the small intestine for starch digestion, and nutrient absorption and metabolism by the splanchnic tissues (the portal-drained viscera and liver). Whilst there appears to be considerable capacity for starch digestion and glucose absorption in the lactating dairy cow, numerous strategic studies implementing postruminal starch or glucose infusions have observed increases in milk yield, but decreased milk fat concentration such that there is little effect on milk energy yield, even in early lactation. Measurements of energy balance confirm that the majority of the supplemental energy arising from postruminal starch digestion is used with high efficiency to support body adipose and protein retention, even in early lactation. These responses may be mediated by changes in insulin status, and be beneficial to the cow in terms of reproductive success and well-being. However, shifting starch digestion from the rumen impacts the nitrogen economy of the cow as well by shifting the microbial protein gained from starch digestion from potentially absorbable protein to endogenous faecal loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blood flow and net nutrient fluxes for portal-drained viscera (PDV) and liver ( total splanchnic tissues) were measured at 19 and 9 d prepartum and at 11, 21, 33, and 83 d in milk ( DIM) in 5 multiparous Holstein-Friesian cows. Cows were fed a grass silage-based gestation ration initially and a corn silage-based lactation ration peripartum and postpartum. Meals were fed at 8-h intervals and hourly (n = 8) measures of splanchnic metabolism were started before ( 0730 h and 0830 h) feeding at 0830 h. Dry matter intakes (DMI) at 19 and 9 d prepartum were not different. Metabolism changes measured from 19 to 9 d prepartum were lower arterial insulin and acetate, higher arterial nonesterified fatty acids and increased net liver removal of glycerol. After calving, PDV and liver blood flow and oxygen consumption more than doubled as DMI and milk yield increased, but 85 and 93% of the respective increases in PDV and liver blood flow at 83 DIM had occurred by 11 DIM. Therefore, factors additional to DMI must also contribute to increased blood flow in early lactation. Most postpartum changes in net PDV and liver metabolism could be attributed to increases in DMI and digestion or increased milk yield and tissue energy loss. Glucose release was increasingly greater than calculated requirements as DIM increased, presumably as tissue energy balance increased. Potential contributions of lactate, alanine, and glycerol to liver glucose synthesis were greatest at 11 DIM but decreased by 83 DIM. Excluding alanine, there was no evidence of an increased contribution of amino acids to liver glucose synthesis is required in early lactation. Increased net liver removal of propionate (69%), lactate (20%), alanine (8%), and glycerol (4%) can account for increased liver glucose release in transition cows from 9 d before to 11 d after calving.