990 resultados para range interactions
Resumo:
Recent studies have suggested that the retention of selectable marker cassettes (like PGK–Neo, in which a hybrid gene consisting of the phosphoglycerate kinase I promoter drives the neomycin phosphotransferase gene) in targeted loci can cause unexpected phenotypes in “knockout” mice due to disruption of expression of neighboring genes within a locus. We have studied targeted mutations in two multigene clusters, the granzyme B locus and the β-like globin gene cluster. The insertion of PGK–Neo into the granzyme B gene, the most 5′ gene in the granzyme B gene cluster, severely reduced the normal expression of multiple genes within the locus, even at distances greater than 100 kb from the mutation. Similarly, the insertion of a PGK–Neo cassette into the β-globin locus control region (LCR) abrogates the expression of multiple globin genes downstream from the cassette. In contrast, a targeted mutation of the promyelocyte-specific cathepsin G gene (which lies just 3′ to the granzyme genes in the same cluster) had minimal effects on upstream granzyme gene expression. Although the mechanism of these long distance effects are unknown, the expression of PGK–Neo can be “captured” by the regulatory domain into which it is inserted. These results suggest that the PGK–Neo cassette can interact productively with locus control regions and thereby disrupt normal interactions between local and long-distance regulatory regions within a tissue-specific domain.
Resumo:
Cellular immunity is mediated by the interaction of an αβ T cell receptor (TCR) with a peptide presented within the context of a major histocompatibility complex (MHC) molecule. Alloreactive T cells have αβ TCRs that can recognize both self- and foreign peptide–MHC (pMHC) complexes, implying that the TCR has significant complementarity with different pMHC. To characterize the molecular basis for alloreactive TCR recognition of pMHC, we have produced a soluble, recombinant form of an alloreactive αβ T cell receptor in Drosophila melanogaster cells. This recombinant TCR, 2C, is expressed as a correctly paired αβ heterodimer, with the chains covalently connected via a disulfide bond in the C-terminal region. The native conformation of the 2C TCR was probed by surface plasmon resonance (SPR) analysis by using conformation-specific monoclonal antibodies, as well as syngeneic and allogeneic pMHC ligands. The 2C interaction with H-2Kb-dEV8, H-2Kbm3-dEV8, H-2Kb-SIYR, and H-2Ld-p2Ca spans a range of affinities from Kd = 10−4 to 10−6M for the syngeneic (H-2Kb) and allogeneic (H-2Kbm3, H-2Ld) ligands. In general, the syngeneic ligands bind with weaker affinities than the allogeneic ligands, consistent with current threshold models of thymic selection and T cell activation. Crystallization of the 2C TCR required proteolytic trimming of the C-terminal residues of the α and β chains. X-ray quality crystals of complexes of 2C with H-2Kb-dEV8, H-2Kbm3-dEV8 and H-2Kb-SIYR have been grown.
Resumo:
By using a Raman microscope, we show that it is possible to probe the conformational states in protein crystals and crystal fragments under growth conditions (in hanging drops). The flavin cofactor in the enzyme para-hydroxybenzoate hydroxylase can assume two conformations: buried in the protein matrix (“in”) or essentially solvent-exposed (“out”). By using Raman difference spectroscopy, we previously have identified characteristic flavin marker bands for the in and out conformers in the solution phase. Now we show that the flavin Raman bands can be used to probe these conformational states in crystals, permitting a comparison between solution and crystal environments. The in or out marker bands are similar for the respective conformers in the crystal and in solution; however, significant differences do exist, showing that the environments for the flavin's isoalloxazine ring are not identical in the two phases. Moreover, the Raman-band widths of the flavin modes are narrower for both in and out conformers in the crystals, indicating that the flavin exists in a more limited range of closely related conformational states in the crystal than in solution. In general, the ability to compare detailed Raman data for complexes in crystals and solution provides a means of bridging crystallographic and solution studies.
Resumo:
Analysis of the 2.4-Å resolution crystal structure of the large ribosomal subunit from Haloarcula marismortui reveals the existence of an abundant and ubiquitous structural motif that stabilizes RNA tertiary and quaternary structures. This motif is termed the A-minor motif, because it involves the insertion of the smooth, minor groove edges of adenines into the minor groove of neighboring helices, preferentially at C-G base pairs, where they form hydrogen bonds with one or both of the 2′ OHs of those pairs. A-minor motifs stabilize contacts between RNA helices, interactions between loops and helices, and the conformations of junctions and tight turns. The interactions between the 3′ terminal adenine of tRNAs bound in either the A site or the P site with 23S rRNA are examples of functionally significant A-minor interactions. The A-minor motif is by far the most abundant tertiary structure interaction in the large ribosomal subunit; 186 adenines in 23S and 5S rRNA participate, 68 of which are conserved. It may prove to be the universally most important long-range interaction in large RNA structures.
Resumo:
There are at least three short-range gap repressors in the precellular Drosophila embryo: Krüppel, Knirps, and Giant. Krüppel and Knirps contain related repression motifs, PxDLSxH and PxDLSxK, respectively, which mediate interactions with the dCtBP corepressor protein. Here, we present evidence that Giant might also interact with dCtBP. The misexpression of Giant in ventral regions of transgenic embryos results in the selective repression of eve stripe 5. A stripe5-lacZ transgene exhibits an abnormal staining pattern in dCtBP mutants that is consistent with attenuated repression by Giant. The analysis of Gal4-Giant fusion proteins identified a minimal repression domain that contains a sequence motif, VLDLS, which is conserved in at least two other sequence-specific repressors. Removal of this sequence from the native Giant protein does not impair its repression activity in transgenic embryos. We propose that Giant-dCtBP interactions might be indirect and mediated by an unknown bZIP subunit that forms a heteromeric complex with Giant. We also suggest that the VLDLS motif recruits an as yet unidentified corepressor protein.
Resumo:
The helicity in water has been determined for several series of alanine-rich peptides that contain single lysine residues and that are N-terminally linked to a helix-inducing and reporting template termed Ac-Hel1. The helix-propagating constant for alanine (sAla value) that best fits the properties of these peptides lies in the range of 1.01-1.02, close to the value reported by Scheraga and coworkers [Wojcik, J., Altmann, K.-H. & Scheraga, H.A. (1990) Biopolymers 30, 121-134], but significantly lower than the value assigned by Baldwin and coworkers [Chakrabartty, A., Kortemme, T. & Baldwin, R.L. (1994) Protein Sci. 3,843-852]. From a study of conjugates Ac-Hel1-Ala(n)-Lys-Ala(m)-NH2 and analogs in which the methylene portion of the lysine side chain is truncated, we find that the unusual helical stability of Ala(n)Lys peptides is controlled primarily by interactions of the lysine side chain with the helix barrel, and only passively by the alanine matrix. Using 1H NMR spectroscopy, we observe nuclear Overhauser effect crosspeaks consistent with proton-proton contacts expected for these interactions.
Resumo:
Aspirin [acetylsalicylic acid (ASA)], along with its analgesic-antipyretic uses, is now also being considered for cardiovascular protection and treatments in cancer and human immunodeficiency virus infection. Although many of ASA's pharmacological actions are related to its ability to inhibit prostaglandin and thromboxane biosynthesis, some of its beneficial therapeutic effects are not completely understood. Here, ASA triggered transcellular biosynthesis of a previously unrecognized class of eicosanoids during coincubations of human umbilical vein endothelial cells (HUVEC) and neutrophils [polymorphonuclear leukocytes (PMN)]. These eicosanoids were generated with ASA but not by indomethacin, salicylate, or dexamethasone. Formation was enhanced by cytokines (interleukin 1 beta) that induced the appearance of prostaglandin G/H synthase 2 (PGHS-2) but not 15-lipoxygenase, which initiates their biosynthesis from arachidonic acid in HUVEC. Costimulation of HUVEC/PMN by either thrombin plus the chemotactic peptide fMet-Leu-Phe or phorbol 12-myristate 13-acetate or ionophore A23187 leads to the production of these eicosanoids from endogenous sources. Four of these eicosanoids were also produced when PMN were exposed to 15R-HETE [(15R)-15-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid] and an agonist. Physical methods showed that the class consists of four tetraene-containing products from arachidonic acid that proved to be 15R-epimers of lipoxins. Two of these compounds (III and IV) were potent inhibitors of leukotriene B4-mediated PMN adhesion to HUVEC, with compound IV [(5S,6R,15R)-5,6,15-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoi c acid; 15-epilipoxin A4] active in the nanomolar range. These results demonstrate that ASA evokes a unique class of eicosanoids formed by acetylated PGHS-2 and 5-lipoxygenase interactions, which may contribute to the therapeutic impact of this drug. Moreover, they provide an example of a drug's ability to pirate endogenous biosynthetic mechanisms to trigger new mediators.
Resumo:
Some growth factors transduce positive growth signals, while others can act as growth inhibitors. Nuclear signaling events of previously quiescent cells stimulated with various growth factors have been studied by isolating the complexed chromatin-associated proteins and chromatin-associated proteins. Signals from the plasma membrane are integrated within the cells and quickly transduced to the nucleus. It is clear that several growth factors, such as epidermal growth factor, transforming growth factor alpha (but not transforming growth factor beta), and platelet-derived growth factor, utilize similar intracellular signaling biochemistries to modulate nucleosomal characteristics. The very rapid and consistent phosphorylation of nuclear p33, p54, and low molecular mass proteins in the range of 15-18 kDa after growth factor stimulation implies that there is a coordination and integration of the cellular signaling processes. Additionally, phosphorylation of p33 and some low molecular mass histones has been found to occur within 5 min of growth factor treatment and to reach a maximum by 30 min. In this study, we report that Neu receptor activating factor also utilizes the same signaling mechanism and causes p33 to become phosphorylated. In addition, both the tumor promoter okadaic acid (which inhibits protein phosphatases 1 and 2A) and phorbol ester (phorbol 12-tetradecanoate 13-acetate) stimulate phosphorylation of p33, p54, and low molecular mass histones. However, transforming growth factor beta, which is a growth inhibitor for fibroblasts, fails to increase p33 phosphorylation. In general, p33 phosphorylation patterns correspond to positive and negative mitogenic signal transduction. p33 isolated from the complexed chromatin-associated protein fraction appears to be a kinase, or tightly associated with a kinase, and shares antigenicity with the cell division cycle-dependent Cdk2 kinase as determined by antibody-dependent analysis. The rapid phosphorylation of nucleosomal proteins may influence sets of early genes needed for the induction and progression of the cell cycle.
Resumo:
A model based on the nonlinear Poisson-Boltzmann equation is used to study the electrostatic contribution to the binding free energy of a simple intercalating ligand, 3,8-diamino-6-phenylphenanthridine, to DNA. We find that the nonlinear Poisson-Boltzmann model accurately describes both the absolute magnitude of the pKa shift of 3,8-diamino-6-phenylphenanthridine observed upon intercalation and its variation with bulk salt concentration. Since the pKa shift is directly related to the total electrostatic binding free energy of the charged and neutral forms of the ligand, the accuracy of the calculations implies that the electrostatic contributions to binding are accurately predicted as well. Based on our results, we have developed a general physical description of the electrostatic contribution to ligand-DNA binding in which the electrostatic binding free energy is described as a balance between the coulombic attraction of a ligand to DNA and the disruption of solvent upon binding. Long-range coulombic forces associated with highly charged nucleic acids provide a strong driving force for the interaction of cationic ligands with DNA. These favorable electrostatic interactions are, however, largely compensated for by unfavorable changes in the solvation of both the ligand and the DNA upon binding. The formation of a ligand-DNA complex removes both charged and polar groups at the binding interface from pure solvent while it displaces salt from around the nucleic acid. As a result, the total electrostatic binding free energy is quite small. Consequently, nonpolar interactions, such as tight packing and hydrophobic forces, must play a significant role in ligand-DNA stability.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H-2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H-2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
The dynamic lateral segregation of signaling proteins into microdomains is proposed to facilitate signal transduction, but the constraints on microdomain size, mobility, and diffusion that might realize this function are undefined. Here we interrogate a stochastic spatial model of the plasma membrane to determine how microdomains affect protein dynamics. Taking lipid rafts as representative microdomains, we show that reduced protein mobility in rafts segregates dynamically partitioning proteins, but the equilibrium concentration is largely independent of raft size and mobility. Rafts weakly impede small-scale protein diffusion but more strongly impede long-range protein mobility. The long-range mobility of raft-partitioning and raft-excluded proteins, however, is reduced to a similar extent. Dynamic partitioning into rafts increases specific interprotein collision rates, but to maximize this critical, biologically relevant function, rafts must be small (diameter, 6 to 14 nm) and mobile. Intermolecular collisions can also be favored by the selective capture and exclusion of proteins by rafts, although this mechanism is generally less efficient than simple dynamic partitioning. Generalizing these results, we conclude that microdomains can readily operate as protein concentrators or isolators but there appear to be significant constraints on size and mobility if microdomains are also required to function as reaction chambers that facilitate nanoscale protein-protein interactions. These results may have significant implications for the many signaling cascades that are scaffolded or assembled in plasma membrane microdomains.
Resumo:
A cellulose/xyloglucan framework is considered to form the basis for the mechanical properties of primary plant cell walls and hence to have a major influence on the biomechanical properties of growing, fleshy plant tissues. In this study, structural variants of xyloglucan have been investigated as components of composites with bacterial cellulose as a simplified model for the cellulose/xyloglucan framework of primary plant cell walls. Evidence for molecular binding to cellulose with perturbation of cellulose crystallinity was found for all xyloglucan types. High molecular mass samples gave homogeneous centimeter-scale composites with extensive cross-linking of cellulose with xyloglucan. Lower molecular mass xyloglucans gave heterogeneous composites having a range of microscopic structures with little, if any, cross-linking. Xyloglucans with reduced levels of galactose substitution had evidence of self-association, competitive with cellulose binding. At comparable molecular mass, fucose substitution resulted in a modest promotion of microscopic features characteristic of primary cell walls. Taken together, the data are evidence that galactose substitution of the xyloglucan core structure is a major determinant of cellulose composite formation and properties, with additional fucose substitution acting as a secondary modulator. These conclusions are consistent with reported structural and mechanical properties of Arabidopsis mutants lacking specific facose and/or galactose residues.
Resumo:
The temperature dependence of the structure of the mixed-anion Tutton salt K-2[Cu(H2O)(6)](SO4)(2x)(SeO4)(2-2x) has been determined for crystals with 0, 17, 25, 68, 78, and 100% sulfate over the temperature range of 85-320 K. In every case, the [Cu(H2O)(6)](2+) ion adopts a tetragonally elongated coordination geometry with an orthorhombic distortion. However, for the compounds with 0, 17, and 25% sulfate, the long and intermediate bonds occur on a different pair of water molecules from those with 68, 78, and 100% sulfate. A thermal equilibrium between the two forms is observed for each crystal, with this developing more readily as the proportions of the two counterions become more similar. Attempts to prepare a crystal with approximately equal amounts of sulfate and selenate were unsuccessful. The temperature dependence of the bond lengths has been analyzed using a model in which the Jahn-Teller potential surface of the [Cu(H2O)(6)](2+) ion is perturbed by a lattice-strain interaction. The magnitude and sign of the orthorhombic component of this strain interaction depends on the proportion of sulfate to selenate. Significant deviations from Boltzmann statistics are observed for those crystals exhibiting a large temperature dependence of the average bond lengths, and this may be explained by cooperative interactions between neighboring complexes.
Resumo:
We measured plasma androgen (combined testosterone and 5 alpha-dihydrotestosterone) (A) and corticosterone (B) in the promiscuous green turtle (Chelonia mydas) during courtship in the southern Great Barrier Reef. This study examined if reproductive behaviors and intermale aggression induced behavioral androgen and adrenocortical responses in reproductively active male and female green turtles. Associations between reproductive behavior and plasma steroids were investigated in green turtles across the population and within individuals. Levels across a range of both asocial and social behaviors were compared including (a) free swimming behavior; (b) initial courtship interactions; (c) mounted behavior (male and female turtles involved in copulatory activities); (d) intermale aggression (rival males that physically competed with another male turtle or mounted males recipient to these aggressive interactions); and (e) extensive courtship damage (male turtles that had accumulated excessive courtship damage from rival males). Behavioral androgen responses were detected in male turtles, in that plasma A was observed to increase with both attendant and mounted behavior. Male turtles who had been subjected to intermale aggression or who had accumulated severe courtship damage exhibited significantly lower plasma A than their respective controls. No pronounced adrenocortical response was observed after either intermale aggression or accumulation of extensive courtship damage. Female turtles exhibited a significant increase in plasma B during swimming versus mounted behavior, but no change in plasma A. We discuss our results in terms of how scramble polygamy might influence behavioral androgen interactions differently from more typical combative and territorial forms Of male polygamy. (C) 1999 Academic Press.