943 resultados para random laser
Resumo:
The Australian e-Health Research Centre (AEHRC) recently participated in the ShARe/CLEF eHealth Evaluation Lab Task 1. The goal of this task is to individuate mentions of disorders in free-text electronic health records and map disorders to SNOMED CT concepts in the UMLS metathesaurus. This paper details our participation to this ShARe/CLEF task. Our approaches are based on using the clinical natural language processing tool Metamap and Conditional Random Fields (CRF) to individuate mentions of disorders and then to map those to SNOMED CT concepts. Empirical results obtained on the 2013 ShARe/CLEF task highlight that our instance of Metamap (after ltering irrelevant semantic types), although achieving a high level of precision, is only able to identify a small amount of disorders (about 21% to 28%) from free-text health records. On the other hand, the addition of the CRF models allows for a much higher recall (57% to 79%) of disorders from free-text, without sensible detriment in precision. When evaluating the accuracy of the mapping of disorders to SNOMED CT concepts in the UMLS, we observe that the mapping obtained by our ltered instance of Metamap delivers state-of-the-art e ectiveness if only spans individuated by our system are considered (`relaxed' accuracy).
Resumo:
Cone-beam computed tomography (CBCT) has enormous potential to improve the accuracy of treatment delivery in image-guided radiotherapy (IGRT). To assist radiotherapists in interpreting these images, we use a Bayesian statistical model to label each voxel according to its tissue type. The rich sources of prior information in IGRT are incorporated into a hidden Markov random field model of the 3D image lattice. Tissue densities in the reference CT scan are estimated using inverse regression and then rescaled to approximate the corresponding CBCT intensity values. The treatment planning contours are combined with published studies of physiological variability to produce a spatial prior distribution for changes in the size, shape and position of the tumour volume and organs at risk. The voxel labels are estimated using iterated conditional modes. The accuracy of the method has been evaluated using 27 CBCT scans of an electron density phantom. The mean voxel-wise misclassification rate was 6.2\%, with Dice similarity coefficient of 0.73 for liver, muscle, breast and adipose tissue. By incorporating prior information, we are able to successfully segment CBCT images. This could be a viable approach for automated, online image analysis in radiotherapy.
Resumo:
The output harmonic quality of N series connected full-bridge dc-ac inverters is investigated. The inverters are pulse width modulated using a common reference signal but randomly phased carrier signals. Through analysis and simulation, probability distributions for inverter output harmonics and vector representations of N carrier phases are combined and assessed. It is concluded that a low total harmonic distortion is most likely to occur and will decrease further as N increases.
Resumo:
YBCO thin films were fabricated by laser deposition, in situ on MgO substrates, using both O2 and N2O as process gas. Films with Tc above 90 K and jc of 106 A/cm2 at 77 K were grown in oxygen at a substrate temperature of 765 °C. Using N2O, the optimum substrate temperature was 745 °C, giving a Tc of 87 K. At lower temperatures, the films made in N2O had higher Tc (79 K) than the films made in oxygen (66 K). SEM and STM investigations of the film surfaces showed the films to consist of a comparatively smooth background surface and a distribution of larger particles. Both the particle size and the distribution density depended on the substrate temperature.
Resumo:
In this paper we explore the relationship between monthly random breath testing (RBT) rates (per 1000 licensed drivers) and alcohol-related traffic crash (ARTC) rates over time, across two Australian states: Queensland and Western Australia. We analyse the RBT, ARTC and licensed driver rates across 12 years; however, due to administrative restrictions, we model ARTC rates against RBT rates for the period July 2004 to June 2009. The Queensland data reveals that the monthly ARTC rate is almost flat over the five year period. Based on the results of the analysis, an average of 5.5 ARTCs per 100,000 licensed drivers are observed across the study period. For the same period, the monthly rate of RBTs per 1000 licensed drivers is observed to be decreasing across the study with the results of the analysis revealing no significant variations in the data. The comparison between Western Australia and Queensland shows that Queensland's ARTC monthly percent change (MPC) is 0.014 compared to the MPC of 0.47 for Western Australia. While Queensland maintains a relatively flat ARTC rate, the ARTC rate in Western Australia is increasing. Our analysis reveals an inverse relationship between ARTC RBT rates, that for every 10% increase in the percentage of RBTs to licensed driver there is a 0.15 decrease in the rate of ARTCs per 100,000 licenced drivers. Moreover, in Western Australia, if the 2011 ratio of 1:2 (RBTs to annual number of licensed drivers) were to double to a ratio of 1:1, we estimate the number of monthly ARTCs would reduce by approximately 15. Based on these findings we believe that as the number of RBTs conducted increases the number of drivers willing to risk being detected for drinking driving decreases, because the perceived risk of being detected is considered greater. This is turn results in the number of ARTCs diminishing. The results of this study provide an important evidence base for policy decisions for RBT operations.
Resumo:
PURPOSE To investigate the utility of using non-contact laser-scanning confocal microscopy (NC-LSCM), compared with the more conventional contact laser-scanning confocal microscopy (C-LSCM), for examining corneal substructures in vivo. METHODS An attempt was made to capture representative images from the tear film and all layers of the cornea of a healthy, 35 year old female, using both NC-LSCM and C-LSCM, on separate days. RESULTS Using NC-LSCM, good quality images were obtained of the tear film, stroma, and a section of endothelium, but the corneal depth of the images of these various substructures could not be ascertained. Using C-LSCM, good quality, full-field images were obtained of the epithelium, subbasal nerve plexus, stroma, and endothelium, and the corneal depth of each of the captured images could be ascertained. CONCLUSIONS NC-LSCM may find general use for clinical examination of the tear film, stroma and endothelium, with the caveat that the depth of stromal images cannot be determined when using this technique. This technique also facilitates image capture of oblique sections of multiple corneal layers. The inability to clearly and consistently image thin corneal substructures - such as the tear film, subbasal nerve plexus and endothelium - is a key limitation of NC-LSCM.
Resumo:
The transmission path from the excitation to the measured vibration on the surface of a mechanical system introduces a distortion both in amplitude and in phase. Moreover, in variable speed conditions, the amplification/attenuation and the phase shift, due to the transfer function of the mechanical system, varies in time. This phenomenon reduces the effectiveness of the traditionally tachometer based order tracking, compromising the results of a discrete-random separation performed by a synchronous averaging. In this paper, for the first time, the extent of the distortion is identified both in the time domain and in the order spectrum of the signal, highlighting the consequences for the diagnostics of rotating machinery. A particular focus is given to gears, providing some indications on how to take advantage of the quantification of the disturbance to better tune the techniques developed for the compensation of the distortion. The full theoretical analysis is presented and the results are applied to an experimental case.
Resumo:
This work considers the problem of building high-fidelity 3D representations of the environment from sensor data acquired by mobile robots. Multi-sensor data fusion allows for more complete and accurate representations, and for more reliable perception, especially when different sensing modalities are used. In this paper, we propose a thorough experimental analysis of the performance of 3D surface reconstruction from laser and mm-wave radar data using Gaussian Process Implicit Surfaces (GPIS), in a realistic field robotics scenario. We first analyse the performance of GPIS using raw laser data alone and raw radar data alone, respectively, with different choices of covariance matrices and different resolutions of the input data. We then evaluate and compare the performance of two different GPIS fusion approaches. The first, state-of-the-art approach directly fuses raw data from laser and radar. The alternative approach proposed in this paper first computes an initial estimate of the surface from each single source of data, and then fuses these two estimates. We show that this method outperforms the state of the art, especially in situations where the sensors react differently to the targets they perceive.
Resumo:
Field robots often rely on laser range finders (LRFs) to detect obstacles and navigate autonomously. Despite recent progress in sensing technology and perception algorithms, adverse environmental conditions, such as the presence of smoke, remain a challenging issue for these robots. In this paper, we investigate the possibility to improve laser-based perception applications by anticipating situations when laser data are affected by smoke, using supervised learning and state-of-the-art visual image quality analysis. We propose to train a k-nearest-neighbour (kNN) classifier to recognise situations where a laser scan is likely to be affected by smoke, based on visual data quality features. This method is evaluated experimentally using a mobile robot equipped with LRFs and a visual camera. The strengths and limitations of the technique are identified and discussed, and we show that the method is beneficial if conservative decisions are the most appropriate.
Resumo:
This paper presents an approach to promote the integrity of perception systems for outdoor unmanned ground vehicles (UGV) operating in challenging environmental conditions (presence of dust or smoke). The proposed technique automatically evaluates the consistency of the data provided by two sensing modalities: a 2D laser range finder and a millimetre-wave radar, allowing for perceptual failure mitigation. Experimental results, obtained with a UGV operating in rural environments, and an error analysis validate the approach.
Resumo:
Camera-laser calibration is necessary for many robotics and computer vision applications. However, existing calibration toolboxes still require laborious effort from the operator in order to achieve reliable and accurate results. This paper proposes algorithms that augment two existing trustful calibration methods with an automatic extraction of the calibration object from the sensor data. The result is a complete procedure that allows for automatic camera-laser calibration. The first stage of the procedure is automatic camera calibration which is useful in its own right for many applications. The chessboard extraction algorithm it provides is shown to outperform openly available techniques. The second stage completes the procedure by providing automatic camera-laser calibration. The procedure has been verified by extensive experimental tests with the proposed algorithms providing a major reduction in time required from an operator in comparison to manual methods.
Resumo:
This work aims to promote integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicles equipped with a camera and a 2D laser range finder. A method to check for inconsistencies between the data provided by these two heterogeneous sensors is proposed and discussed. First, uncertainties in the estimated transformation between the laser and camera frames are evaluated and propagated up to the projection of the laser points onto the image. Then, for each pair of laser scan-camera image acquired, the information at corners of the laser scan is compared with the content of the image, resulting in a likelihood of correspondence. The result of this process is then used to validate segments of the laser scan that are found to be consistent with the image, while inconsistent segments are rejected. Experimental results illustrate how this technique can improve the reliability of perception in challenging environmental conditions, such as in the presence of airborne dust.