965 resultados para proton chain transfer


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A protein fluorescence probe system, coupling excited-state intermolecular Förster energy transfer and intramolecular proton transfer (PT), is presented. As an energy donor for this system, we used tryptophan, which transfers its excitation energy to 3-hydroxyflavone (3-HF) as a flavonol prototype, an acceptor exhibiting excited-state intramolecular PT. We demonstrate such a coupling in human serum albumin–3-HF complexes, excited via the single intrinsic tryptophan (Trp-214). Besides the PT tautomer fluorescence (λmax = 526 nm), these protein–probe complexes exhibit a 3-HF anion emission (λmax = 500 nm). Analysis of spectroscopic data leads to the conclusion that two binding sites are involved in the human serum albumin–3-HF interaction. The 3-HF molecule bound in the higher affinity binding site, located in the IIIA subdomain, has the association constant (k1) of 7.2 × 105 M−1 and predominantly exists as an anion. The lower affinity site (k2 = 2.5 × 105 M−1), situated in the IIA subdomain, is occupied by the neutral form of 3-HF (normal tautomer). Since Trp-214 is situated in the immediate vicinity of the 3-HF normal tautomer bound in the IIA subdomain, the intermolecular energy transfer for this donor/acceptor pair has a 100% efficiency and is followed by the PT tautomer fluorescence. Intermolecular energy transfer from the Trp-214 to the 3-HF anion bound in the IIIA subdomain is less efficient and has the rate of 1.61 × 108 s−1, thus giving for the donor/acceptor distance a value of 25.5 Å.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In cytochrome c oxidase, a requirement for proton pumping is a tight coupling between electron and proton transfer, which could be accomplished if internal electron-transfer rates were controlled by uptake of protons. During reaction of the fully reduced enzyme with oxygen, concomitant with the “peroxy” to “oxoferryl” transition, internal transfer of the fourth electron from CuA to heme a has the same rate as proton uptake from the bulk solution (8,000 s−1). The question was therefore raised whether the proton uptake controls electron transfer or vice versa. To resolve this question, we have studied a site-specific mutant of the Rhodobacter sphaeroides enzyme in which methionine 263 (SU II), a CuA ligand, was replaced by leucine, which resulted in an increased redox potential of CuA. During reaction of the reduced mutant enzyme with O2, a proton was taken up at the same rate as in the wild-type enzyme (8,000 s−1), whereas electron transfer from CuA to heme a was impaired. Together with results from studies of the EQ(I-286) mutant enzyme, in which both proton uptake and electron transfer from CuA to heme a were blocked, the results from this study show that the CuA → heme a electron transfer is controlled by the proton uptake and not vice versa. This mechanism prevents further electron transfer to heme a3–CuB before a proton is taken up, which assures a tight coupling of electron transfer to proton pumping.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose an interpretation of the experimental findings of Klinman and coworkers [Cha, Y., Murray, C. J. & Klinman, J. P. (1989) Science 243, 1325–1330; Grant, K. L. & Klinman, J. P. (1989) Biochemistry 28, 6597–6605; and Bahnson, B. J. & Klinman, J. P. (1995) Methods Enzymol. 249, 373–397], who showed that proton transfer reactions that are catalyzed by bovine serum amine oxidase proceed through tunneling. We show that two different tunneling models are consistent with the experiments. In the first model, the proton tunnels from the ground state. The temperature dependence of the kinetic isotope effect is caused by a thermally excited substrate mode that modulates the barrier, as has been suggested by Borgis and Hynes [Borgis, D. & Hynes, J. T. (1991) J. Chem. Phys. 94, 3619–3628]. In the second model, there is both over-the-barrier transfer and tunneling from excited states. Finally, we propose two experiments that can distinguish between the possible mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reaction center (RC) from Rhodobacter sphaeroides couples light-driven electron transfer to protonation of a bound quinone acceptor molecule, QB, within the RC. The binding of Cd2+ or Zn2+ has been previously shown to inhibit the rate of reduction and protonation of QB. We report here on the metal binding site, determined by x-ray diffraction at 2.5-Å resolution, obtained from RC crystals that were soaked in the presence of the metal. The structures were refined to R factors of 23% and 24% for the Cd2+ and Zn2+ complexes, respectively. Both metals bind to the same location, coordinating to Asp-H124, His-H126, and His-H128. The rate of electron transfer from QA− to QB was measured in the Cd2+-soaked crystal and found to be the same as in solution in the presence of Cd2+. In addition to the changes in the kinetics, a structural effect of Cd2+ on Glu-H173 was observed. This residue was well resolved in the x-ray structure—i.e., ordered—with Cd2+ bound to the RC, in contrast to its disordered state in the absence of Cd2+, which suggests that the mobility of Glu-H173 plays an important role in the rate of reduction of QB. The position of the Cd2+ and Zn2+ localizes the proton entry into the RC near Asp-H124, His-H126, and His-H128. Based on the location of the metal, likely pathways of proton transfer from the aqueous surface to QB⨪ are proposed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The reaction center (RC) from Rhodobacter sphaeroides converts light into chemical energy through the light induced two-electron, two-proton reduction of a bound quinone molecule QB (the secondary quinone acceptor). A unique pathway for proton transfer to the QB site had so far not been determined. To study the molecular basis for proton transfer, we investigated the effects of exogenous metal ion binding on the kinetics of the proton-assisted electron transfer kAB(2) (QA−•QB−• + H+ → QA(QBH)−, where QA is the primary quinone acceptor). Zn2+ and Cd2+ bound stoichiometrically to the RC (KD ≤ 0.5 μM) and reduced the observed value of kAB(2) 10-fold and 20-fold (pH 8.0), respectively. The bound metal changed the mechanism of the kAB(2) reaction. In native RCs, kAB(2) was previously shown to be rate-limited by electron transfer based on the dependence of kAB(2) on the driving force for electron transfer. Upon addition of Zn2+ or Cd2+, kAB(2) became approximately independent of the electron driving force, implying that the rate of proton transfer was reduced (≥ 102-fold) and has become the rate-limiting step. The lack of an effect of the metal binding on the charge recombination reaction D+•QAQB−• → DQAQB suggests that the binding site is located far (>10 Å) from QB. This hypothesis is confirmed by preliminary x-ray structure analysis. The large change in the rate of proton transfer caused by the stoichiometric binding of the metal ion shows that there is one dominant site of proton entry into the RC from which proton transfer to QB−• occurs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Myosin is thought to generate movement of actin filaments via a conformational change between its light-chain domain and its catalytic domain that is driven by the binding of nucleotides and actin. To monitor this change, we have measured distances between a gizzard regulatory light chain (Cys 108) and the active site (near or at Trp 130) of skeletal myosin subfragment 1 (S1) by using luminescence resonance energy transfer and a photoaffinity ATP-lanthanide analog. The technique allows relatively long distances to be measured, and the label enables site-specific attachment at the active-site with only modest affect on myosin’s enzymology. The distance between these sites is 66.8 ± 2.3 Å when the nucleotide is ADP and is unchanged on binding to actin. The distance decreases slightly with ADP-BeF3, (−1.6 ± 0.3 Å) and more significantly with ADP-AlF4 (−4.6 ± 0.2 Å). During steady-state hydrolysis of ATP, the distance is temperature-dependent, becoming shorter as temperature increases and the complex with ADP⋅Pi is favored over that with ATP. We conclude that the distance between the active site and the light chain varies as Acto-S1-ADP ≈ S1-ADP > S1-ADP-BeF3 > S1-ADP-AlF4 ≈ S1-ADP-Pi and that S1-ATP > S1-ADP-Pi. The changes in distance are consistent with a substantial rotation of the light-chain binding domain of skeletal S1 between the prepowerstroke state, simulated by S1-ADP-AlF4, and the post-powerstroke state, simulated by acto-S1-ADP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bovine heart cytochrome c oxidase is an electron-current driven proton pump. To investigate the mechanism by which this pump operates it is important to study individual electron- and proton-transfer reactions in the enzyme, and key reactions in which they are kinetically and thermodynamically coupled. In this work, we have simultaneously measured absorbance changes associated with electron-transfer reactions and conductance changes associated with protonation reactions following pulsed illumination of the photolabile complex of partly reduced bovine cytochrome c oxidase and carbon monoxide. Following CO dissociation, several kinetic phases in the absorbance changes were observed with time constants ranging from approximately 3 microseconds to several milliseconds, reflecting internal electron-transfer reactions within the enzyme. The data show that the rate of one of these electron-transfer reactions, from cytochrome a3 to a on a millisecond time scale, is controlled by a proton-transfer reaction. These results are discussed in terms of a model in which cytochrome a3 interacts electrostatically with a protonatable group, L, in the vicinity of the binuclear center, in equilibrium with the bulk through a proton-conducting pathway, which determines the rate of proton transfer (and indirectly also of electron transfer). The interaction energy of cytochrome a3 with L was determined independently from the pH dependence of the extent of the millisecond-electron transfer and the number of protons released, as determined from the conductance measurements. The magnitude of the interaction energy, 70 meV (1 eV = 1.602 x 10(-19) J), is consistent with a distance of 5-10 A between cytochrome a3 and L. Based on the recently determined high-resolution x-ray structures of bovine and a bacterial cytochrome c oxidase, possible candidates for L and a physiological role for L are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The green fluorescent protein (GFP) of the jellyfish Aequorea Victoria has attracted widespread interest since the discovery that its chromophore is generated by the autocatalytic, posttranslational cyclization and oxidation of a hexapeptide unit. This permits fusion of the DNA sequence of GFP with that of any protein whose expression or transport can then be readily monitored by sensitive fluorescence methods without the need to add exogenous fluorescent dyes. The excited state dynamics of GFP were studied following photo-excitation of each of its two strong absorption bands in the visible using fluorescence upconversion spectroscopy (about 100 fs time resolution). It is shown that excitation of the higher energy feature leads very rapidly to a form of the lower energy species, and that the excited state interconversion rate can be markedly slowed by replacing exchangeable protons with deuterons. This observation and others lead to a model in which the two visible absorption bands correspond to GFP in two ground-state conformations. These conformations can be slowly interconverted in the ground state, but the process is much faster in the excited state. The observed isotope effect suggests that the initial excited state process involves a proton transfer reaction that is followed by additional structural changes. These observations may help to rationalize and motivate mutations that alter the absorption properties and improve the photo stability of GFP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The x-ray crystallographic structure of the photosynthetic reaction center (RC) has proven critical in understanding biological electron transfer processes. By contrast, understanding of intraprotein proton transfer is easily lost in the immense richness of the details. In the RC of Rhodobacter (Rb.) sphaeroides, the secondary quinone (QB) is surrounded by amino acid residues of the L subunit and some buried water molecules, with M- and H-subunit residues also close by. The effects of site-directed mutagenesis upon RC turnover and quinone function have implicated several L-subunit residues in proton delivery to QB, although some species differences exist. In wild-type Rb. sphaeroides, Glu L212 and Asp L213 represent an inner shell of residues of particular importance in proton transfer to QB. Asp L213 is crucial for delivery of the first proton, coupled to transfer of the second electron, while Glu L212, possibly together with Asp L213, is necessary for delivery of the second proton, after the second electron transfer. We report here the first study, by site-directed mutagenesis, of the role of the H subunit in QB function. Glu H173, one of a cluster of strongly interacting residues near QB, including Asp L213, was altered to Gln. In isolated mutant RCs, the kinetics of the first electron transfer, leading to formation of the semiquinone, QB-, and the proton-linked second electron transfer, leading to the formation of fully reduced quinol, were both greatly retarded, as observed previously in the Asp L213 --> Asn mutant. However, the first electron transfer equilibrium, QA-QB <==> QAQB-, was decreased, which is opposite to the effect of the Asp L213 --> Asn mutation. These major disruptions of events coupled to proton delivery to QB were largely reversed by the addition of azide (N3-). The results support a major role for electrostatic interactions between charged groups in determining the protonation state of certain entities, thereby controlling the rate of the second electron transfer. It is suggested that the essential electrostatic effect may be to "potentiate" proton transfer activity by raising the pK of functional entities that actually transfer protons in a coupled fashion with the second electron transfer. Candidates include buried water (H3O+) and Ser L223 (serine-OH2+), which is very close to the O5 carbonyl of the quinone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Experimental evidence for proton transfer via a hydrogen-bonded network in a membrane protein is presented. Bacteriorhodopsin's proton transfer mechanism on the proton uptake pathway between Asp-96 and the Schiff base in the M-to-N transition was determined. The slowdown of this transfer by removal of the proton donor in the Asp-96-->Asn mutant can be accelerated again by addition of small weak acid anions such as azide. Fourier-transform infrared experiments show in the Asp-96-->Asn mutant a transient protonation of azide bound to the protein in the M-to-N transition and, due to the addition of azide, restoration of the IR continuum band changes as seen in wild-type bR during proton pumping. The continuum band changes indicate fast proton transfer on the uptake pathway in a hydrogen-bonded network for wild-type bR and the Asp-96-->Asn mutant with azide. Since azide is able to catalyze proton transfer steps also in several kinetically defective bR mutants and in other membrane proteins, our finding might point to a general element of proton transfer mechanisms in proteins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper analyzes the theme of knowledge transfer in supply chain management. The aim of this study is to present the social network analysis (SNA) as an useful tool to study knowledge networks within supply chain, to monitor knowledge flows and to identify the accumulating knowledge nodes of the networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The "living" and/or controlled cationic ring-opening bulk copolymerization of oxetane (Ox) with tetrahydropyran (THP) (cyclic ether with no homopolymerizability) at 35°C was examined using ethoxymethyl-1 -oxoniacyclohexane hexafluoroantimonate (EMOA) and (BF3 · CH3OH)THP as fast and slow initiator, respectively, yielding living and nonliving polymers with pseudoperiodic sequences (i.e., each pentamethylene oxide fragment inserted into the polymer is flanked by two trimethylene oxide fragments). Good control over number-average molecular weight (Mn up to 150000 g mol-1) with molecular weight distribution (MWD ∼ 1.4-1, 5) broader than predicted by the Poison distribution (MWDs > 1 +1/DPn) was attained using EMOA as initiating system, i.e., C 2H5OCH2Cl with 1.1 equiv of AgSbF6 as a stable catalyst and 1.1 equiv of 2,6-di-tert-butylpyridine used as a non-nucleophilic proton trap. With (BF3 · CH 3OH)THP, a drift of the linear dependence M n(GPC) vs Mn(theory) to lower molecular weight was observed together with the production of cyclic oligomers, ∼3-5% of the Ox consumed in THP against ∼30% in dichloromethane. Structural and kinetics studies highlighted a mechanism of chains growth where the rate of mutual conversion between "strain ACE species" (chain terminated by a tertiary 1-oxoniacyclobutane ion, Al) and "strain-free ACE species" (chain terminated by a tertiary 1-oxoniacyclohexane ion, Tl) depends on the rate at which Ox converts the stable species T1 (kind of "dormant" species) into a living "propagating" center A1 (i.e., k aapp[Ox]). The role of the THP solvent associated with the suspension of irreversible and reversible transfer reactions to polymer, when the polymerization is initiated with EMOA, was predicted by our kinetic considerations. The activation -deactivation pseudoequilibrium coefficient (Qt) was then calculated in a pure theoretical basis. From the measured apparent rate constant of Ox (kOxapp) and THP (kTHPapp = ka(endo)app) consumption, Qt and reactivity ratio (kp/kd, k a(endo)/ka(exo), and ks/ka(endo) were calculated, which then allow the determination of the transition rate constant of elementary step reactions that governs the increase of Mu with conversion. © 2009 American Chemical Society.