386 resultados para proteinase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structures of an aspartic proteinase from Trichoderma reesei (TrAsP) and of its complex with a competitive inhibitor, pepstatin A, were solved and refined to crystallographic R-factors of 17.9% (R(free)=21.2%) at 1.70 angstrom resolution and 15.81% (R(free) = 19.2%) at 1.85 angstrom resolution, respectively. The three-dimensional structure of TrAsP is similar to structures of other members of the pepsin-like family of aspartic proteinases. Each molecule is folded in a predominantly beta-sheet bilobal structure with the N-terminal and C-terminal domains of about the same size. Structural comparison of the native structure and the TrAsP-pepstatin complex reveals that the enzyme undergoes an induced-fit, rigid-body movement upon inhibitor binding, with the N-terminal and C-terminal lobes tightly enclosing the inhibitor. Upon recognition and binding of pepstatin A, amino acid residues of the enzyme active site form a number of short hydrogen bonds to the inhibitor that may play an important role in the mechanism of catalysis and inhibition. The structures of TrAsP were used as a template for performing statistical coupling analysis of the aspartic protease family. This approach permitted, for the first time, the identification of a network of structurally linked residues putatively mediating conformational changes relevant to the function of this family of enzymes. Statistical coupling analysis reveals coevolved continuous clusters of amino acid residues that extend from the active site into the hydrophobic cores of each of the two domains and include amino acid residues from the flap regions, highlighting the importance of these parts of the protein for its enzymatic activity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chagas disease, caused by the protozoan Trypanosoma cruzi, is one of the most serious amongst the so-called neglected diseases in Latin America, specially in Brazil. So far there has been no effective treatment for the chronic phase of this disease. Cruzain is a major cysteine protease of T cruzi and it is recognized as a valid target for Chagas disease chemotherapy. The mechanism of cruzain action is associated with the nucleophilic attack of an activated sulfur atom towards electrophilic groups. In this report, features of a putative pharmacophore model of the enzyme, developed as a virtual screening tool for the selection of potential cruzain inhibitors, are described. The final proposed model was applied to the ZINC v.7 database and afterwards experimentally validated by an enzymatic inhibition assay. One of the compounds selected by the model showed cruzain inhibition in the low micromolar range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insect chymotrypsins are distinctively sensitive to plant protein inhibitors, suggesting that they differ in subsite architecture and hence in substrate specificities. Purified digestive chymotrypsins from insects of three different orders were assayed with internally quenched fluorescent oligopeptides with three different amino acids at P1 (Tyr, Phe, and Leu) and 13 amino acid replacements in positions P1`, P2, and P3. The binding energy (Delta G(s), calculated from Km values) and the activation energy (Delta G(T)(double dagger), determined from k(cat)/K-m values) were calculated. The hydrophobicities of each subsite were calculated from the efficiency of hydrolysis of the different amino acid replacements at that subsite. The results showed that except for S1, the other subsites (S2, S3, and S1`) vary among chymotrypsins. This result contrasts with insect trypsin data that revealed a trend along evolution, putatively associated with resistance to plant inhibitors. In spite of those differences, the data suggested that in lepidopteran chymotrypsins S2 and S1` bind the substrate ground state, whereas only S1` binds the transition state, supporting aspects of the present accepted mechanism of catalysis. 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ruthenium NO donors of the group trans-[Ru(NO)(NH(3))(4)L](n+), where the ligand (L) is N-heterocyclic H(2)O, SO(3)(2 -), or triethyl phosphite, are able to lyse Trypanosoma cruzi in vitro and in vivo. Using half-maximal (50%) inhibitory concentrations against bloodstream trypomastigotes (IC(50)(try)) and cytotoxicity data on mammalian V-79 cells (IC(50)(V79)), the in vitro therapeutic indices (TIs) (IC(50)(V79)/IC(50)(try)) for these compounds were calculated. Compounds that exhibited an in vitro TI of >= 10 and trypanocidal activity against both epimastigotes and trypomastigotes with an IC(50)(try/epi) of <= 100 mu M were assayed in a mouse model for acute Chagas` disease, using two different routes (intraperitoneal and oral) for drug administration. A dose-effect relationship was observed, and from that, the ideal dose of 400 nmol/kg of body weight for both trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) (isn, isonicotinamide) and trans-[Ru(NO)(NH3) 4imN](BF4) 3 (imN, imidazole) and median (50%) effective doses (ED50) of 86 and 190 nmol/kg, respectively, were then calculated. Since the 50% lethal doses (LD(50)) for both compounds are higher than 125 mu mol/kg, the in vivo TIs (LD(50)/ED(50)) of the compounds are 1,453 for trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and 658 for trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3). Although these compounds exhibit a marked trypanocidal activity and are able to react with cysteine, they exhibit very low activity in T. cruzi -glycosomal glyceraldehyde-3-phosphate dehydrogenase tests, suggesting that this enzyme is not their target. The trans-[Ru(NO)(NH(3))(4)isn](BF(4))(3) and trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) compounds are able to eliminate amastigote nests in myocardium tissue at 400-nmol/kg doses and ensure the survival of all infected mice, thus opening a novel set of therapies to try against trypanosomatids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foi estudada uma bacteriocina produzida por uma linhagem de B. cereus 8A, isolado de solo da região Sul do Brasil. Na primeira etapa de estudo determinaram-se as condições básicas de produção de bacteriocina com amplo espectro de ação denominada de Cereína 8A. Observou-se que durante a fase estacionária ocorre o máximo da sua produção, iniciando sua síntese no final da fase exponencial. As condições de maior produção foram a 30º C, agitação e contínua e numa faixa de pH de 7,0-8,5. A bacteriocina bruta inibiu várias bactérias indicadoras, como Listeria monocytogenes, Clostridium perfringens e Bacillus cereus. O teste de termoestabilidade mostrou a perda de atividade quando submetida a uma temperatura a partir de 87º C. Verificou-se a resistência da bacteriocina bruta frente à tripsina e papaína, mas não frente à proteinase K e pronase E. B. cereus e L. monocytogenes foram utilizadas como bactérias indicadoras para a determinação do modo de ação, após a determinação da dose bactericida de 200 UA mL-1 e 400 UA mL-1 respectivamente. A Cereína 8A demonstrou uma ação inibidora em culturas de Escherichia coli e Salmonella Enteritidis, quando tratadas com EDTA. A atividade esporicida foi observada contra esporos de B. cereus após tratamento com 400 UA ml -1. A análise da biomassa de L. monocytogenes e B. cereus após tratamento com a Cereína 8A, através da espectrofotometria de infravermelho determinou alteração no perfil, correspondente à fração dos ácidos graxos da membrana celular bacteriana. A substância peptídica foi separada por meio da precipitação com sulfato de amônio, extração com 1-butanol e aplicação em coluna de cromatografia por troca iônica tipo Q-Sepharose. A Cereína 8A purificada mostrou maior sensibilidade a proteases e ao calor e um peso molecular de aproximadamente 26 kDa. O espectro ultravioleta foi típico de um polipeptídeo e o espectro de infravermelho indica presença de grupamentos NH, acil e ligações peptídicas na sua estrutura. Uma hipótese do mecanismo de ação seria a desestruturação da membrana celular pela abertura de poros.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O carrapato Boophilus microplus é um ectoparasita hematófago que infesta os rebanhos bovinos de regiões tropicais e subtropicais, causando grande prejuízo à pecuária. O principal método de controle deste parasita baseia-se no uso de acaricidas, entretanto, o uso de vacinas tem sido estudado como um método de controle promissor. A Boophilus Yolk pro-Cathepsin (BYC) é uma aspártico proteinase presente no ovo do carrapato e envolvida na embriogênese que foi anteriormente testada como imunógeno vacinal. Neste estudo, o cDNA da BYC foi amplificado por PCR e clonado em dois vetores de expressão para produção de duas formas da proteína recombinante com cauda de histidina, rBYC e rBYC-Trx (fusionada com tioredoxina). As duas formas foram expressas em Escherichia coli na forma de corpúsculos de inclusão (CI) e comparadas quanto ao nível de expressão, solubilidade e rendimento na purificacão. Três agentes desnaturantes (N-lauroil sarcosina, hidrocloreto de guanidina e uréia) foram testados para solubilização dos CIs. Sarcosina foi o agente mais eficiente, solubilizando mais de 90 % de rBYC-Trx e rBYC. As duas proteínas recombinantes foram purificadas em cromatografia de afinidade por metal (Ni2+), sob condições desnaturantes. O rendimento na purificação da proteína solúvel foi de 84 % para r-BYC-Trx e 6 % para rBYC. As duas formas foram reconhecidas por soro de coelhos, camundongos e bovinos previamente imunizados com BYC nativa, demonstrando a existência de epítopos comuns entre a BYC nativa e as formas recombinantes expressas em E. coli. Para verificar o potencial vacinal da proteína recombinante, um grupo de bovinos Hereford foi imunizado com rBYC e desafiado com 20.000 larvas de B. microplus por animal. Os soros dos bovinos imunizados reconheceram a BYC nativa em ELISA e “Western blot”, com títulos entre 500 e 4.000. Os resultados do desafio mostraram uma proteção parcial contra a infestação, com 25 % de proteção global. O perfil de expressão de citocinas (IL-2, IL-4, IL-10, IFN-γ) foi verificado por RT-PCR, porém os resultados não permitiram identificar a polarização da resposta imune em Th1 ou Th2. Os resultados de imunoproteção obtidos com a BYC recombinante foram similares aos obtidos na imunização de bovinos com BYC nativa, indicando a possibilidade de uso da forma recombinante como imunógeno vacinal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GOMES, Carlos E. M. et al. Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiology and Biochemistry (Paris), v. 43, n. 12, p. 1095-1102, 2005.ISSN 0981-9428. DOI:10.1016/j.plaphy.2005.11.004.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A proteinaceous trypsin inhibitor was purified from Crotalaria pallida seeds by ammonium sulphate fractionation, affinity chromatography on immobilized Trypsin-Sepharose and TCA precipitation. The trypsin inhibitor, named ITC, had Mr of 32.5 kDa by SDS-PAGE and was composed by two subunits with 27.7 and 5.6 kDa linked by disulphide bridges, a typical characteristic of Kunitz-Inhibitor family. ITC was stable until 50°C, and at 100°C its residual activity was of about 60%. Also, ITC was stable at pHs 2 to 12. The inhibition of trypsin by ITC was non-competitive, with a Ki of 8,8 x 10-7M. ITC inhibits weakly other serine proteinases such as chymotrypsin and elastase. The inhibition of papain (44% of inhibition), a cysteine proteinase was an indicative of the bi-functionality of ITC. In vitro assays against digestive proteinases from several Lepdoptera, Diptera and Coleoptera pests were made. ITC inhibited in 100% digestive enzymes of Ceratitis capitata (fruit fly), Spodoptera frugiperda and Alabama argillacea, the last one being a cotton pest. It also inhibited in 74.4% Callosobruchus maculatus (bean weevil) digestive enzymes, a Coleoptera pest. ITC, when added in artificial diet models, affected weakly the development of C. capitata larvae and it had a WD50 of 2.65% to C. maculatus larvae

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteinases are enzymes distributed widely founded in several organisms and perform many different functions, from maintaining homeostasis to the worsening of some diseases such as cancer, autoimmune diseases and infections. The proteins responsible of controlling the action of these enzymes are the inhibitors, that are classified based on their target proteases and are founded since simple organisms, such as bacteria, to higher organisms, such as larger plants and mammals. Plant proteinase inhibitors act by reducing or inactivating the activity of target proteases, thus, these proteins have been studied as potential tools in the treatment of diseases related to protease activities. In this context, an inhibitor of chymotrypsin from Erythrina velutina, called EvCI was previously purified and it was observed that this protein plays in vitro anticoagulant activity and anti-inflammatory activity in in vivo model. Aiming to reduce the environmental impact caused by the purification EvCI in high amounts and to facilitate the process of obtaining this protein, the recombinant chymotrypsin inhibitor from Eryhrina velutina was produced after cloning and expression in Escherichia coli. The bacteria were grown in LB medium and after induction of the expression this material was subjected to procedures for cell lysis and the product was applied on Nickel-affinity column. The proteins adsorbed were digested by thrombin and applied on Chymotrypsin-Sepharose affinity column, obtaining the purified inhibitor, named recEvCI. After electrophoresis, the recombinant inhibitor showed an approximately molecular mass of 17 kDa, and reduced the chymotrypsin and elastase activities in vitro. The recombinant inhibitor was sequenced and was found similar amino acids residues when compared to other inhibitors deposited in the database, with some modifications. recEvCI showed high stability under pH variations and reducing conditions, maintaining its activity around 80%. This protein increased the blood coagulation time in vitro by acting on the intrinsic pathway and did not show cytotoxicity against strains of mouse 3T3 fibroblasts and RAW 264.7 macrophages. recEvCI showed microbicide activity related to release of nitric oxide and consequently the activation of macrophages, futhermore having proinflammatory effects assessed by increased release of TNF-α. These results indicate that recEvCI can be biotechnologically used as a new tool in the control of coagulation-related diseases as well as can be an activating agent of the immune system in immunosuppressed individuals

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitinases are enzymes involved in degradation of chitin and are present in a range of organisms, including those that do not contain chitin, such as bacteria, viruses, plants and animals, and play important physiological and ecological roles. Chitin is hydrolyzed by a chitinolytic system classified as: endo-chitinases, exo-chitinases and N-acetyl-b-D-glucosaminidases. In this study a Litochitinase1 extracted from the cephalotorax of the shrimp Litopenaeus Schmitt was purified 987.32 times using ionexchange chromatography DEAE-Biogel and molecular exclusion Sephacryl S-200. These enzyme presented a molecular mass of about 28.5 kDa. The results, after kinetic assay with the Litochitinase1 using as substrate p-nitrophenyl-N-acetyl-b-Dglucosaminideo, showed apparent Km of 0.51 mM, optimal activity at pH ranging from 5.0 to 6.0, optimum temperature at 55°C and stability when pre-incubated at temperatures of 25, 37, 45, 50 and 55°C. The enzyme showed a range of stability at pH 4.0 to 5.5. HgCl2 inhibited Litochitinase1 while MgCl2 enhances its activity. Antimicrobial tests showed that Litochitinase1 present activity against gram-negative bacterium Escherichia coli in the 800 μg/mL concentration. The larvicidal activity against Aedes aegypti was investigated using crude extracts, F-III (50-80%) and Litochitinase1 at 24 and 48 hours. The results showed larvicidal activity in all these samples with EC50 values of 6.59 mg/mL for crude extract, 5.36 mg/mL for F-III and 0.71 mg/mL for Litochitinase1 at 24 hours and 3.22 and 0.49 mg/mL for the F-III and Litochitinase1 at 48 hours, respectively. Other experiments confirmed the presence of chitin in the midgut of Aedes aegypti larvae, which may be suffering the action of Litochitinase1 killing the larvae, but also the absence of contaminating proteins as serine proteinase inhibitors and lectins in the crude extract, F-III and Litochitinase1, indicating that the death of the larvae is by action of the Litochitinase1. We also observed that the enzymes extracted from intestinal homogenate of the larvae no have activity on Litochitinase1. These results indicate that the enzyme can be used as an alternative to control of infections caused by Escherichia coli and reducing the infestation of the mosquito vector of dengue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The seeds are excellent sources of proteinase inhibitors and have been highlighted owing to various applications. Among these applications are those in effect on food intake and weight gain that stand out because of the increasing number of obese individuals. This study evaluated the effects of trypsin inhibitor present in the seed of tamarind (Tamarindus indica L.) reduction in weight gain, biochemical and morphological alterations in Wistar rats. For this, we partially purified a trypsin inhibitor tamarind seed. This inhibitor, ITT2 at a concentration of 25 mg / kg body weight, over a period of 14 days was able to reduce food intake in rats (n = 6) by approximately 47%, causing a reduction in weight gain approximately 70% when compared with the control group. With the evaluation of the in vivo digestibility was demonstrated that the animals lost weight due to satiety, presented by the reduction of food intake, since there were significant differences between true digestibility for the control group (90.7%) and the group treated with inhibitor (89.88%). Additionally, we checked the deeds of ITT2 on biochemical parameters (glucose, triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase, gamma glutamyl transferase albumin, globulin, total protein and C-reactive protein) and these, when assessed in the study groups showed no statistically significant variations. We also evaluate the histology of some organs, liver, stomach, intestine, and pancreas, and showed no changes. And to evaluate the effect of trypsin inhibitor on food intake due to the satiety is regulated by cholecystokinin (CCK) were measured plasma levels, and it was observed that the levels of CCK in animals receiving ITT2 were significantly higher ( 20 + 1.22) than in animals receiving only solution with casein (10.14 + 2.9) or water (5.92 + 1.15). Thus, the results indicate that the effect caused ITT2 satiety, reducing food intake, which in turn caused a reduction in weight gain in animals without causing morphological and biochemical changes, this effect caused by the elevation of plasma levels CCK

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plodia interpunctella (Indian meal moth) is a cosmopolitan pest that attacks not only a wide range of stored grain as well other food products. Due to its economic importance several researches have focused in a method with ability to control this pest with few or no damage to the environment. The study of digestive enzymes inhibitors, lectins and chitin-binding proteins, has often been proposed as an alternative to reduce insect damage. In this study we report the major classes of digestive enzymes during larval growth in P. Interpunctella, being those proteinases actives at pH 9.5 and optimum temperature of 50 oC to both larvae of the 3rd instar and pre-pupal stage of development. In vitro and zymogram assays presented the effects of several inhibitors, such as SBTI, TLCK and PMSF to intestinal homogenate of 3rd instar larvae of 62%, 92% and 87% of inhibition and In pre-pupal stage of 87%, 62 % and 55% of inhibition, respectively. Zymograms showed inhibition of two low molecular masses protein bands by TLCK and that in presence of SBTI were retarded. These results are indicative of predominance of digestive serine proteinases in gut homogenate from Plodia interpunctella larvae. This serine proteinase was then used as a target to evaluate the effect of SBTI on larvae in in vivo assay. Effect of SBTI on mortality and larval mass was not observed at until 4% of concentration (w/w) in diets. Chitin, another target to insecticidal proteins, was observed by chemical method. Moreover, optic microscopy confirmed the presence of a peritrophic membrane. Established this target, in vivo effect of EvV, a chitin binding vicilin, evaluated during the larval development of P. interpunctella and was obtained a LD50 of 0,23% and WD50 of 0,27% to this protein. Mechanism of action was proposed through of the in vivo digestibility of EvV methodology. During the passage through the larval digestive tract was observed that EvV was susceptible to digestive enzymes and a reactive fragment, visualized by Western blotting, produced by digestion was recovered after dissociation of the peritrophic membrane. The bound of EvV to peritrophic membrane was confirmed by immunohystochemical assays that showed strong immunofluorescent signal of EvV-FITC binding and peritrophic membrane. These results are a indicative that vicilins could be utilized as potential insecticide to Plodia interpunctella and a control methods using EvV as bioinsecticide should be studied to reduce lost caused by storage insect pests

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite Candida species are often human commensals isolated from various oral sites such as: tongue, cheek and palatal mucosa plus subgingival region, there are some properties linked to the organism commonly known as virulence factors which confer them the ability to produce disease. Oral candidiasis is one of the main oral manifestations reported in literature related to kidney transplant patients. The objectives of the present study were to identify and investigate virulence factors of yeasts isolated from the oral cavity of kidney transplant recipients admitted at the Hospital Universitário Onofre Lopes, in Natal RN. Seventy Candida species isolated from 111 kidney transplant recipients were investigated in this study. Identification of the isolates was performed by using the evidence of germ tube formation, hypertonic broth, tolerance to grow at 42°C, micromorphology and biochemical profiles. We observed a high rate of isolation of yeasts from the oral cavity of kidney transplant recipients (63.1%) being C. albicans was the most prevalent species. Oral candidiasis was diagnosed in 14.4% of transplant recipients. We evaluated virulence properties of the isolates regarding to: biofilm formation on polystyrene microplates as well as XTT reduction, adherence to acrylic resin and human buccal epithelial cells and proteinase activity. Most isolates were able to form biofilm by the method of adhesion to polystyrene. All isolates of Candida spp. remained viable during biofilm formation when analyzed by the method of XTT reduction. The number of CFU attached to the acrylic resin suggested high adherence for C. parapsilosis. C. albicans isolates showed higher median adherence to human buccal epithelial cells than non-C. albicans Candida isolates. Nevertheless, this difference was not statistically significant. C. dubliniensis showed low ability to adhere to plastic and epithelial cells and biofilm formation. Proteolytic activity was observed for all the isolates investigated, including the unique isolate of C. dubliniensis. There was a statistically significant association between proteinase production and the presence of oral candidiasis. Studies related to oral candidiasis in renal transplant recipients are limited to clinical and epidemiological data, but investigations concerning Candida spp. virulence factor for this group of individuals are still scarce. We emphasize the importance of studies related to virulence factors of yeasts isolated from this population to contribute to the knowledge of microbiological aspects of oral candidiasis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vulvovaginal candidiasis (VVC) is one of the most common causes of vaginitis and affects about 75% of women of reproductive age. The majority of cases (80 to 90%) are due to C. albicans, the most virulent species of the genus Candida. Virulence attributes are scarcely investigated and the source of infection remains uncertain. Objective: This study aimed to evaluate the virulence factors and genotypes of clinical isolates of C. albicans sequentially obtained from the anus and vagina of patients with sporadic and recurrent VVC. Materials and methods: We analyzed 62 clinical isolates of C. albicans (36 vaginal and 26 anal strains). Direct examination of vaginal and anal samples and colony forming units (CFU) counts were performed. Yeasts were identified using the chromogenic media CHROMagar Candida® and by classical methodology, and phenotypically characterized regarding to virulence factors, including the ability to adhere to epithelial cells, proteinase activity, morphogenesis and biofilm formation. The genotypes of the strains were investigated with ABC genotyping, microsatellite genotyping with primer M13 and RAPD. Results: We found 100% agreement between direct examination and culture of vaginal samples. Filamentous forms were present in most of the samples of vaginal secretion, which presented CFU counts significantly higher than the samples of anal secretion. There was no statistically significant difference between virulence factors of infecting vaginal isolates and those presented by colonizing anal isolates; as well as for the comparison of the vaginal isolates from patients with different clinical conditions (sporadic or recurrent VVC). There was a decrease in the ability to adhere to HBEC, morphogenesis and biofilm formation of the vaginal isolates during the progress of infection. There was an association between the ability to express different virulence factors and the clinical manifestations presented by the patients. Genotype A was the most prevalent (93.6%), followed by genotype C (6.4%). We found maintenance of the same ABC genotype and greater prevalence of microevolution for the vaginal strains of C. albicans sequentially obtained. Vaginal and anal isolates of C. albicans obtained simultaneously from the same patient presented the same ABC genotype and high genetic relatedness. Conclusion: It is noteworthy that the proliferation of yeast and bud-to-hypha transition are important for the establishment of CVV. The expression of virulence factors is important for the pathogenesis of VVC, although it does not seem to be determinant in the transition from colonization to infection or to the installation of recurrent condition. Genotype A seems to be dominant over the others in both vaginal and anal isolates of patients with VVC. The most common scenario was microevolution of the strains of C. albicans in the vaginal environment. It is suggested that the anal reservoir constituted a possible source of vaginal infection, in most cases assessed