984 resultados para protein precursor
Resumo:
Two key genes in terpenoid indole alkaloid biosynthesis, Tdc and Str, encoding tryptophan decarboxylase and strictosidine synthase, respectively, are coordinately induced by fungal elicitors in suspension-cultured Catharanthus roseus cells. We have studied the roles of the jasmonate biosynthetic pathway and of protein phosphorylation in signal transduction initiated by a partially purified elicitor from yeast extract. In addition to activating Tdc and Str gene expression, the elicitor also induced the biosynthesis of jasmonic acid. The jasmonate precursor α-linolenic acid or methyl jasmonate (MeJA) itself induced Tdc and Str gene expression when added exogenously . Diethyldithiocarbamic acid, an inhibitor of jasmonate biosynthesis, blocked both the elicitor-induced formation of jasmonic acid and the activation of terpenoid indole alkaloid biosynthetic genes. The protein kinase inhibitor K-252a abolished both elicitor-induced jasmonate biosynthesis and MeJA-induced Tdc and Str gene expression. Analysis of the expression of Str promoter/gusA fusions in transgenic C. roseus cells showed that the elicitor and MeJA act at the transcriptional level. These results demonstrate that the jasmonate biosynthetic pathway is an integral part of the elicitor-triggered signal transduction pathway that results in the coordinate expression of the Tdc and Str genes and that protein kinases act both upstream and downstream of jasmonates.
Resumo:
We isolated SN-HLPf (Sambucus nigra hevein-like fruit protein), a hevein-like chitin-binding protein, from mature elderberry fruits. Cloning of the corresponding gene demonstrated that SN-HLPf is synthesized as a chimeric precursor consisting of an N-terminal chitin-binding domain corresponding to the mature elderberry protein and an unrelated C-terminal domain. Sequence comparisons indicated that the N-terminal domain of this precursor has high sequence similarity with the N-terminal domain of class I PR-4 (pathogenesis-related) proteins, whereas the C terminus is most closely related to that of class V chitinases. On the basis of these sequence homologies the gene encoding SN-HLPf can be considered a hybrid between a PR-4 and a class V chitinase gene.
Resumo:
Secretory proteins that fail to fold in the endoplasmic reticulum (ER) are transported back to the cytosol and degraded by proteasomes. It remains unclear how the cell distinguishes between folding intermediates and misfolded proteins. We asked whether misfolded secretory proteins are covalently modified in the ER before export. We found that a fraction of mutant alpha-factor precursor, but not the wild type, was progressively O-mannosylated in microsomes and in intact yeast cells by protein O-mannosyl transferase 2 (Pmt2p). O-Mannosylation increased significantly in vitro under ER export conditions, i.e., in the presence of ATP and cytosol, and this required export-proficient Sec61p in the ER membrane. Deletion of PMT2, however, did not abrogate mutant alpha-factor precursor degradation but, rather, enhanced its turnover in intact yeast cells. In vitro, O-mannosylated mutant alpha-factor precursor was stable and protease protected, and a fraction was associated with Sec61p in the ER lumen. Thus, prolonged ER residence allows modification of exposed O-mannosyl acceptor sites in misfolded proteins, which abrogates misfolded protein export from the ER at a posttargeting stage. We conclude that there is a limited window of time during which misfolded proteins can be removed from the ER before they acquire inappropriate modifications that can interfere with disposal through the Sec61 channel.
Resumo:
The amino-terminal signaling domain of the Sonic hedgehog secreted protein (Shh-N), which derives from the Shh precursor through an autoprocessing reaction mediated by the carboxyl-terminal domain, executes multiple functions in embryonic tissue patterning, including induction of ventral and suppression of dorsal cell types in the developing neural tube. An apparent catalytic site within Shh-N is suggested by structural homology to a bacterial carboxypeptidase. We demonstrate here that alteration of residues presumed to be critical for a hydrolytic activity does not cause a loss of inductive activity, thus ruling out catalysis by Shh-N as a requirement for signaling. We favor the alternative, that Shh-N functions primarily as a ligand for the putative receptor Patched (Ptc). This possibility is supported by new evidence for direct binding of Shh-N to Ptc and by a strong correlation between the affinity of Ptc-binding and the signaling potency of Shh-N protein variants carrying alterations of conserved residues in a particular region of the protein surface. These results together suggest that direct Shh-N binding to Ptc is a critical event in transduction of the Shh-N signal.
Resumo:
Protein kinase C δ (PKC δ) is normally activated by diacylglycerol produced from receptor-mediated hydrolysis of inositol phospholipids. On stimulation of cells with H2O2, the enzyme is tyrosine phosphorylated, with a concomitant increase in enzymatic activity. This activation does not appear to accompany its translocation to membranes. In the present study, the tyrosine phosphorylation sites of PKC δ in the H2O2-treated cells were identified as Tyr-311, Tyr-332, and Tyr-512 by mass spectrometric analysis with the use of the precursor-scan method and by immunoblot analysis with the use of phosphorylation site-specific antibodies. Tyr-311 was the predominant modification site among them. In an in vitro study, phosphorylation at this site by Lck, a non-receptor-type tyrosine kinase, enhanced the basal enzymatic activity and elevated its maximal velocity in the presence of diacylglycerol. The mutation of Tyr-311 to phenylalanine prevented the increase in this maximal activity, but replacement of the other two tyrosine residues did not block such an effect. The results indicate that phosphorylation at Tyr-311 between the regulatory and catalytic domains is a critical step for generation of the active PKC δ in response to H2O2.
Resumo:
Globin genes are subject to tissue-specific and developmental stage-specific regulation. A switch from human fetal (gamma)-to adult (beta)-globin expression occurs within erythroid precursor cells of the adult lineage. Previously we and others showed by targeted gene disruption that the zinc finger gene, erythroid Krüppel-like factor (EKLF), is required for expression of the beta-globin gene in mice, presumably through interaction with a high-affinity binding site in the proximal promoter. To examine the role of EKLF in the developmental regulation of the human gamma-globin gene we interbred EKLF heterozygotes (+/-) with mice harboring a human beta-globin yeast artificial chromosome transgene. We find that in the absence of EKLF, while human beta-globin expression is dramatically reduced, gamma-globin transcripts are elevated approximately 5-fold. Impaired silencing of gamma-globin expression identifies EKLF as the first transcription factor participating quantitatively in the gamma-globin to beta-globin switch. Our findings are compatible with a competitive model of switching in which EKLF mediates an adult stage-specific interaction between the beta-globin gene promoter and the locus control region that excludes the gamma-globin gene.
Resumo:
The key enzyme of chlorophyll biosynthesis in higher plants, NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR, EC 1.3.1.33), accumulates in its precursor form (pPORA) in barley. pPORA is bound to the chloroplasts and is able to interact with the enzyme's substrate, Pchlide, at both the cytosolic as well as the stromal side of the plastid envelope. The interaction with intraplastidic Pchlide, formed in ATP-containing chloroplasts upon feeding with -aminolevulinic acid, drives vectorial translocation of pPORA across the plastid envelope membranes. In contrast, exogenously applied Pchlide causes the release of the envelope-bound precursor protein to the cytosol. Both processes compete with each other if intra- and extraplastidic Pchlide are applied simultaneously. A cytosolic heat shock cognate protein of Mr 70,000 present in wheat germ and barley leaf protein extracts appears to prevent the release of the pPORA to the cytosol in vivo, however.
Resumo:
The heptadecapeptide orphanin FQ (OFQ) is a recently discovered neuropeptide that exhibits structural features reminiscent of the opioid peptides and that is an endogenous ligand to a G protein-coupled receptor sequentially related to the opioid receptors. We have cloned both the human and rat cDNAs encoding the OFQ precursor proteins, to investigate whether the sequence relationships existing between the opioid and OFQ systems are also found at the polypeptide precursor level, in particular whether the OFQ precursor would encode several bioactive peptides as do the opioid precursors, and to study the regional distribution of OFQ sites of synthesis. The entire precursor protein displays structural homology to the opioid peptide precursors, especially preprodynorphin and preproenkephalin. The predicted amino acid sequence of the OFQ precursor contains a putative signal peptide and one copy of the OFQ sequence flanked by pairs of basic amino acid residues. Carboxyl-terminal to the OFQ sequence, the human and rat precursors contain a stretch of 28 amino acids that is 100% conserved and thus may encode novel bioactive peptides. Two peptides derived from this stretch were synthesized but were found to be unable to activate the OFQ receptor, suggesting that if they are produced in vivo, these peptides would likely recognize receptors different from the OFQ receptor. To begin analyzing the sites of OFQ mRNA synthesis, Northern analysis of human and rat tissues were carried out and showed that the OFQ precursor mRNA is mainly expressed in the brain. In situ hybridization of rat brain slices demonstrated a regional distribution pattern of the OFQ precursor mRNA, which is distinct from that of the opioid peptide precursors. These data confirm that the OFQ system differs from the opioid system at the molecular level, although the OFQ and opioid precursors may have arisen from a common ancestral gene.
Resumo:
Anacardic acids, a class of secondary compounds derived from fatty acids, are found in a variety of dicotyledonous families. Pest resistance (e.g., spider mites and aphids) in Pelargonium xhortorum (geranium) is associated with high levels (approximately 81%) of unsaturated 22:1 omega 5 and 24:1 omega 5 anacardic acids in the glandular trichome exudate. A single dominant locus controls the production of these omega 5 anacardic acids, which arise from novel 16:1 delta 11 and 18:1 delta 13 fatty acids. We describe the isolation and characterization of a cDNA encoding a unique delta 9 14:0-acyl carrier protein fatty acid desaturase. Several lines of evidence indicated that expression of this desaturase leads to the production of the omega 5 anacardic acids involved in pest resistance. First, its expression was found in pest-resistant, but not suspectible, plants and its expression followed the production of the omega 5 anacardic acids in segregating populations. Second, its expression and the occurrence of the novel 16:1 delta 11 and 18:1 delta 13 fatty acids and the omega 5 anacardic acids were specific to tall glandular trichomes. Third, assays of the recombinant protein demonstrated that this desaturase produced the 14:1 delta 9 fatty acid precursor to the novel 16:1 delta 11 and 18:1 delta 13 fatty acids. Based on our genetic and biochemical studies, we conclude that expression of this delta 9 14:0-ACP desaturase gene is required for the production of omega 5 anacardic acids that have been shown to be necessary for pest resistance in geranium.
Resumo:
We report the molecular cloning of import intermediate associated protein (IAP) 100, a 100-kDa protein of the chloroplast protein import machinery of peas. IAP100 contains two potential alpha-helical transmembrane segments and also behaves like an integral membrane protein. It was localized to the inner chloroplast envelope membrane. Immunoprecipitation experiments using monospecific anti-IAP100 antibodies and a nonionic detergent-generated chloroplast lysate gave the following results. (i) The four integral membrane proteins of the outer chloroplast import machinery were not coprecipitated with IAP100 indicating that the inner and outer membrane import machineries are not coupled in isolated chloroplasts. (ii) the major protein that coprecipitated with IAP100 was identified as stromal chaperonin 60 (cpn60); the association of IAP100 and cpn60 was specific and was abolished when immunoprecipitation was carried out in the presence of ATP. (iii) In a lysate from chloroplasts that had been preincubated for various lengths of time in an import reaction with radiolabeled precursor (pS) of the small subunit of Rubisco, we detected coimmunoprecipitation of IAP100, cpn60, and the imported mature form (S) of precursor. Relative to the time course of import, coprecipitation of S first increased and then decreased, consistent with a transient association of the newly imported S with the chaperonin bound to IAP100. These data suggest that IAP100 serves in recruiting chaperonin for folding of newly imported proteins.
Resumo:
Since most of the examples of "exon shuffling" are between vertebrate genes, the view is often expressed that exon shuffling is limited to the evolutionarily recent lineage of vertebrates. Although exon shuffling in plants has been inferred from the analysis of intron phases of plant genes [Long, M., Rosenberg, C. & Gilbert, W. (1995) Proc. Natl. Acad. Sci. USA 92, 12495-12499] and from the comparison of two functionally unknown sunflower genes [Domon, C. & Steinmetz, A. (1994) Mol. Gen. Genet. 244, 312-317], clear cases of exon shuffling in plant genes remain to be uncovered. Here, we report an example of exon shuffling in two important nucleus-encoded plant genes: cytosolic glyceraldehyde-3-phosphate dehydrogenase (cytosolic GAPDH or GapC) and cytochrome c1 precursor. The intron-exon structures of the shuffled region indicate that the shuffling event took place at the DNA sequence level. In this case, we can establish a donor-recipient relationship for the exon shuffling. Three amino terminal exons of GapC have been donated to cytochrome c1, where, in a new protein environment, they serve as a source of the mitochondrial targeting function. This finding throws light upon an old important but unsolved question in gene evolution: the origin of presequences or transit peptides that generally exist in nucleus-encoded organelle genes.
Resumo:
There is a need for more effective therapy for chronic virus infections. A principle natural mechanism for elimination of virus-infected host cells is activation of viral antigen-specific cytotoxic T lymphocytes (CTL). In an effort to develop methods of inducing virus-specific CTL responses that might be utilized in therapy of virus infections, we have investigated the effect of B7, a costimulatory factor for T-cell activation. In this study we show that delivery of genes encoding human B7-1 and a viral antigen in the same recombinant viral vector to cells of mice induces a greater viral antigen-specific CTL response than does similar delivery of the viral antigen gene alone. Two recombinant adenovirus vectors were constructed with the foreign genes inserted in the early region 3. One of them (Ad1312) directed expression of the surface antigen gene of hepatitis B virus (HBS); the other (Ad1310) directed coexpression of HBS and human B7-1 (CD80) by means of an internal ribosomal entry site placed between the two coding sequences. When inoculated into BALB/c mice, both vectors induced a viral surface antigen-specific CTL response. The response induced by Ad1310 was stronger than that by Adl312 as measured by a chromium release assay for CTL activity and limiting dilution analysis for CTL precursor frequency, indicating that the B7-1 gene co-delivered with the HBS gene had an enhancing effect on the CTL response against surface antigen. Ad1310 also induced a higher titer of antibody against surface antigen than did Ad1312. This result suggests that expression of a costimulatory protein and a viral antigen in the same cells in vivo induces stronger immune responses than expression of the antigen alone. This could be a novel strategy for development of both preventive and therapeutic vaccines against infectious agents.
Resumo:
We have genetically replaced the native receptor binding domain of diphtheria toxin with an extended form of substance P (SP): SP-glycine (SP-Gly). The resulting fusion protein, DAB389SP-Gly, is composed of the catalytic and transmembrane domains of diphtheria toxin genetically coupled to SP-Gly. Because native SP requires a C-terminal amide moiety to bind with high affinity to the SP receptor, the precursor form of the fusion toxin, DAB389SP-Gly, was converted to DAB389SP by treatment with peptidylglycine-alpha-amidating monooxygenase. We demonstrate that following conversion, DAB389SP is selectively cytotoxic for cell lines that express either the rat or the human SP receptor. We also demonstrate that the cytotoxic action of DAB389SP is mediated via the SP receptor and dependent upon passage through an acidic compartment. To our knowledge, this is the first reported use of a neuropeptide as the targeting ligand for a fusion toxin; and the first instance in which an inactive precursor form of a fusion toxin is converted to the active form by a posttranslational modification.
Resumo:
The present study addresses the assembly in the chloroplast thylakoid membranes of PsaD, a peripheral membrane protein of the photosystem I complex. Located on the stromal side of the thylakoids, PsaD was found to assemble in vitro into the membranes in its precursor (pre-PsaD) and also in its mature (PsaD) form. Newly assembled unprocessed pre-PsaD was resistant to NaBr and alkaline wash. Yet it was sensitive to proteolytic digestion. In contradistinction, when the assembled precursor was processed, the resulting mature PsaD was resistant to proteases to the same extent as endogenous [correction of endogeneous] PsaD. The accumulation of protease-resistant PsaD in the thylakoids correlated with the increase of mature-PsaD in the membranes. This protection of mature PsaD from proteolysis could not be observed when PsaD was in a soluble form-i.e. not assembled within the thylakoids. The data suggest that pre-PsaD assembles to the membranes and only in a second step processing takes place. The observation that the assembly of pre-PsaD is affected by salts to a much lesser extent than that of mature-PsaD supports a two-step assembly of pre-PsaD.
Resumo:
Mitogen-activated protein kinase (MAPK) is selectively activated by injecting either mos or MAPK kinase (mek) RNA into immature mouse oocytes maintained in the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). IBMX arrests oocyte maturation, but Mos (or MEK) overexpression overrides this block. Under these conditions, meiosis I is significantly prolonged, and MAPK becomes fully activated in the absence of p34cdc2 kinase or maturation-promoting factor. In these oocytes, large openings form in the germinal vesicle adjacent to condensing chromatin, and microtubule arrays, which stain for both MAPK and centrosomal proteins, nucleate from these regions. Maturation-promoting factor activation occurs later, concomitant with germinal vesicle breakdown, the contraction of the microtubule arrays into a precursor of the spindle, and the redistribution of the centrosomal proteins into the newly forming spindle poles. These studies define important new functions for the Mos/MAPK cascade in mouse oocyte maturation and, under these conditions, reveal novel detail of the early stages of oocyte meiosis I.