953 resultados para proposed solutions
Resumo:
This document was adapted from a paper originally presented to the 8th Annual Caribbean Conference of Comprehensive Disaster Management, held in Montego Bay, Jamaica in December, 2013. It summarizes several activities that ECLAC has undertaken to assess the current state of information and communications technology (ICT) in the field of disaster risk management (DRM) as practiced in the Caribbean. These activities included an in-depth study that encompassed a survey of disaster management organizations in the region, an Expert Group Meeting attended by the heads of several national disaster offices, and a training workshop for professionals working in DRM in the Caribbean. One of the notable conclusions of ECLAC’s investigation on this topic is that the lack of human capacity is the single largest constraint that is faced in the implementation of ICT projects for DRM in the Caribbean. In considering strategies to address the challenge of limited human capacity at a regional level, two separate issues are recognized – the need to increase the ICT capabilities of disaster management professionals, and the need to make ICT specialists available to disaster management organizations to advise and assist in the implementation of technology-focused projects. To that end, two models are proposed to engage with this issue at a regional level. The first entails the establishment of a network of ICT trainers in the Caribbean to help DRM staff develop a strategic understanding of how technology can be used to further their organizational goals. The second is the development of “Centres of Excellence” for ICT in the Caribbean, which would enable the deployment of specialized ICT expertise to national disaster management offices on a project-by-project basis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have previously proposed a role of hydration in the allosteric control of hemoglobin based on the effect of varying concentrations of polyols and polyethers on the human hemoglobin oxygen affinity and on the solution water activity (Colombo, M. F., Rau, D. C., and Parsegian, V. A. (1992) Science 256, 655-659). Here, the original analyses are extended to test the possibility of concomitant solute and water allosteric binding and by introducing the bulk dielectric constant as a variable in our experiments. We present data which indicate that glycine and glucose influence HbA oxygen affinity to the same extent, despite the fact that glycine increases and glucose decreases the bulk dielectric constant of the solution. Furthermore, we derive an equation linking changes in oxygen affinity to changes in differential solute and water binding to test critically the possibility of neutral solute heterotropic binding. Applied to the data, these analyses support our original interpretation that neutral solutes act indirectly on the regulation of allosteric behavior of hemoglobin by varying the chemical potential of water in solution. This leads to a displacement of the equilibrium between Hb conformational states in proportion to their differential hydration.
Resumo:
Warrick and Hussen developed in the nineties of the last century a method to scale Richards' equation (RE) for similar soils. In this paper, new scaled solutions are added to the method of Warrick and Hussen considering a wider range of soils regardless of their dissimilarity. Gardner-Kozeny hydraulic functions are adopted instead of Brooks-Corey functions used originally by Warrick and Hussen. These functions allow to reduce the dependence of the scaled RE on the soil properties. To evaluate the proposed method (PM), the scaled RE was solved numerically using a finite difference method with a fully implicit scheme. Three cases were considered: constant-head infiltration, constant-flux infiltration, and drainage of an initially uniform wet soil. The results for five texturally different soils ranging from sand to clay (adopted from the literature) showed that the scaled solutions were invariant to a satisfactory degree. However, slight deviations were observed mainly for the sandy soil. Moreover, the scaled solutions deviated when the soil profile was initially wet in the infiltration case or when deeply wet in the drainage condition. Based on the PM, a Philip-type model was also developed to approximate RE solutions for the constant-head infiltration. The model showed a good agreement with the scaled RE for the same range of soils and conditions, however only for Gardner-Kozeny soils. Such a procedure reduces numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Scaling methods allow a single solution to Richards' equation (RE) to suffice for numerous specific cases of water flow in unsaturated soils. During the past half-century, many such methods were developed for similar soils. In this paper, a new method is proposed for scaling RE for a wide range of dissimilar soils. Exponential-power (EP) functions are used to reduce the dependence of the scaled RE on the soil hydraulic properties. To evaluate the proposed method, the scaled RE was solved numerically considering two test cases: infiltration into relatively dry soils having initially uniform water content distributions, and gravity-dominant drainage occurring from initially wet soil profiles. Although the results for four texturally different soils ranging from sand to heavy clay (adopted from the UNSODA database) showed that the scaled solution were invariant for a wide range of flow conditions, slight deviations were observed when the soil profile was initially wet in the infiltration case or deeply wet in the drainage case. The invariance of the scaled RE makes it possible to generalize a single solution of RE to many dissimilar soils and conditions. Such a procedure reduces the numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils.
Resumo:
Positronium formation in the bimary molecular solid solutions Tb1-xEux (dpm)(3) (dpm = dipivaloylmethanate) has been investigated. A strong linear correlation between the D-5(4) Tb(III) energy level excited state lifetime and the positronium formation probability has been observed. This correlation indicates that the ligand-to-metal charge transfer LMCT states act in both luminescence quenching and positronium formation inhibition, as previously proposed. A kinetic mechanism is proposed to explain this correlation and shows that excited electronic states have a very important role in the positronium formation mechanism.
Resumo:
Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]
Resumo:
In this paper, a general scheme for generating extra cuts during the execution of a Benders decomposition algorithm is presented. These cuts are based on feasible and infeasible master problem solutions generated by means of a heuristic. This article includes general guidelines and a case study with a fixed charge network design problem. Computational tests with instances of this problem show the efficiency of the strategy. The most important aspect of the proposed ideas is their generality, which allows them to be used in virtually any Benders decomposition implementation.
Resumo:
The aim of this study was to assess, using the DPPH assay, the antioxidant activity of several substances that could be proposed to immediately revert the problems caused by bleaching procedures. The percentage of antioxidant activity (AA%) of 10% ascorbic acid solution (AAcidS), 10% ascorbic acid gel (AAcidG), 10% sodium ascorbate solution (SodAsS), 10% sodium ascorbate gel (SodAsG), 10% sodium bicarbonate (Bicarb), Neutralize® (NE), Desensibilize® (DES), catalase C-40 at 10 mg/mL (CAT), 10% alcohol solution of alpha-tocopherol (VitE), Listerine® (LIS), 0.12% chlorhexidine (CHX), Croton Lechleri (CL), 10 % aqueous solution of Uncaria Tomentosa (UT), artificial saliva (ArtS) and 0.05% sodium fluoride (NaF) was assessed in triplicate by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical assay. All substances exhibited antioxidant activity, except for CL. AAcidS, AAcidG and VitE exhibited the highest AA% (p<0.05). On the contrary, CHX, NE, LIS and NaF showed the lowest AA% (p<0.05). In conclusion, AAcidS, AAcidG, SodAsS, SodAsG and VitE presented the highest antioxidant activity among substances tested in this study. The DPPH assay provides an easy and rapid way to evaluate potential antioxidants.
Resumo:
In this thesis some multivariate spectroscopic methods for the analysis of solutions are proposed. Spectroscopy and multivariate data analysis form a powerful combination for obtaining both quantitative and qualitative information and it is shown how spectroscopic techniques in combination with chemometric data evaluation can be used to obtain rapid, simple and efficient analytical methods. These spectroscopic methods consisting of spectroscopic analysis, a high level of automation and chemometric data evaluation can lead to analytical methods with a high analytical capacity, and for these methods, the term high-capacity analysis (HCA) is suggested. It is further shown how chemometric evaluation of the multivariate data in chromatographic analyses decreases the need for baseline separation. The thesis is based on six papers and the chemometric tools used are experimental design, principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), partial least squares regression (PLS) and parallel factor analysis (PARAFAC). The analytical techniques utilised are scanning ultraviolet-visible (UV-Vis) spectroscopy, diode array detection (DAD) used in non-column chromatographic diode array UV spectroscopy, high-performance liquid chromatography with diode array detection (HPLC-DAD) and fluorescence spectroscopy. The methods proposed are exemplified in the analysis of pharmaceutical solutions and serum proteins. In Paper I a method is proposed for the determination of the content and identity of the active compound in pharmaceutical solutions by means of UV-Vis spectroscopy, orthogonal signal correction and multivariate calibration with PLS and SIMCA classification. Paper II proposes a new method for the rapid determination of pharmaceutical solutions by the use of non-column chromatographic diode array UV spectroscopy, i.e. a conventional HPLC-DAD system without any chromatographic column connected. In Paper III an investigation is made of the ability of a control sample, of known content and identity to diagnose and correct errors in multivariate predictions something that together with use of multivariate residuals can make it possible to use the same calibration model over time. In Paper IV a method is proposed for simultaneous determination of serum proteins with fluorescence spectroscopy and multivariate calibration. Paper V proposes a method for the determination of chromatographic peak purity by means of PCA of HPLC-DAD data. In Paper VI PARAFAC is applied for the decomposition of DAD data of some partially separated peaks into the pure chromatographic, spectral and concentration profiles.
Resumo:
In this thesis we have developed solutions to common issues regarding widefield microscopes, facing the problem of the intensity inhomogeneity of an image and dealing with two strong limitations: the impossibility of acquiring either high detailed images representative of whole samples or deep 3D objects. First, we cope with the problem of the non-uniform distribution of the light signal inside a single image, named vignetting. In particular we proposed, for both light and fluorescent microscopy, non-parametric multi-image based methods, where the vignetting function is estimated directly from the sample without requiring any prior information. After getting flat-field corrected images, we studied how to fix the problem related to the limitation of the field of view of the camera, so to be able to acquire large areas at high magnification. To this purpose, we developed mosaicing techniques capable to work on-line. Starting from a set of overlapping images manually acquired, we validated a fast registration approach to accurately stitch together the images. Finally, we worked to virtually extend the field of view of the camera in the third dimension, with the purpose of reconstructing a single image completely in focus, stemming from objects having a relevant depth or being displaced in different focus planes. After studying the existing approaches for extending the depth of focus of the microscope, we proposed a general method that does not require any prior information. In order to compare the outcome of existing methods, different standard metrics are commonly used in literature. However, no metric is available to compare different methods in real cases. First, we validated a metric able to rank the methods as the Universal Quality Index does, but without needing any reference ground truth. Second, we proved that the approach we developed performs better in both synthetic and real cases.
Resumo:
RAF is a bio-energetic descriptive model integrates with MAD model to support Integrated Farm Management. RAF model aimed to enhancing economical, social and environmental sustainability of farm production in terms of energy via convert energy crops and animal manure to biogas and digestate (bio-fertilizers) by anaerobic digestion technologies, growing and breeding practices. The user defines farm structure in terms of present crops, livestock and market prices and RAF model investigates the possibilities of establish on-farm biogas system (different anaerobic digestion technologies proposed for different scales of farms in terms of energy requirements) according to budget and sustainability constraints to reduce the dependence on fossil fuels. The objective function of RAF (Z) is optimizing the total net income of farm (maximizing income and minimizing costs) for whole period which is considered by the analysis. The main results of this study refers to the possibility of enhancing the exploitation of the available Italian potentials of biogas production from on-farm production of energy crops and livestock manure feedstock by using the developed mathematical model RAF integrates with MAD to presents reliable reconcile between farm size, farm structure and on-farm biogas systems technologies applied to support selection, applying and operating of appropriate biogas technology at any farm under Italian conditions.
Resumo:
We introduce a new boundary layer formalism on the basis of which a class of exact solutions to the Navier–Stokes equations is derived. These solutions describe laminar boundary layer flows past a flat plate under the assumption of one homogeneous direction, such as the classical swept Hiemenz boundary layer (SHBL), the asymptotic suction boundary layer (ASBL) and the oblique impingement boundary layer. The linear stability of these new solutions is investigated, uncovering new results for the SHBL and the ASBL. Previously, each of these flows had been described with its own formalism and coordinate system, such that the solutions could not be transformed into each other. Using a new compound formalism, we are able to show that the ASBL is the physical limit of the SHBL with wall suction when the chordwise velocity component vanishes while the homogeneous sweep velocity is maintained. A corresponding non-dimensionalization is proposed, which allows conversion of the new Reynolds number definition to the classical ones. Linear stability analysis for the new class of solutions reveals a compound neutral surface which contains the classical neutral curves of the SHBL and the ASBL. It is shown that the linearly most unstable Görtler–Hämmerlin modes of the SHBL smoothly transform into Tollmien–Schlichting modes as the chordwise velocity vanishes. These results are useful for transition prediction of the attachment-line instability, especially concerning the use of suction to stabilize boundary layers of swept-wing aircraft.
Resumo:
Abstract. This paper describes a new and original method for designing oscillators based on the Normalized Determinant Function (NDF) and Return Relations (RRT)- Firstly, a review of the loop-gain method will be performed. The loop-gain method pros, cons and some examples for exploring wrong solutions provided by this method will be shown. This method produces in some cases wrong solutions because some necessary conditions have not been fulfilled. The required necessary conditions to assure a right solution will be described. The necessity of using the NDF or the Transpose Return Relations (RRT), which are related with the True Loop-Gain, to test the additional conditions will be demonstrated. To conclude this paper, the steps for oscillator design and analysis, using the proposed NDF/RRj method, will be presented. The loop-gain wrong solutions will be compared with the NDF/RRj and the accuracy of this method to estimate the oscillation frequency and QL will be demonstrated. Some additional examples of plane reference oscillators (Z/Y/T), will be added and they will be analyzed with the new NDF/RRj proposed method, even these oscillators cannot be analyzed using the classic loop gain method.
Resumo:
The global economic structure, with its decentralized production and the consequent increase in freight traffic all over the world, creates considerable problems and challenges for the freight transport sector. This situation has led shipping to become the most suitable and cheapest way to transport goods. Thus, ports are configured as nodes with critical importance in the logistics supply chain as a link between two transport systems, sea and land. Increase in activity at seaports is producing three undesirable effects: increasing road congestion, lack of open space in port installations and a significant environmental impact on seaports. These adverse effects can be mitigated by moving part of the activity inland. Implementation of dry ports is a possible solution and would also provide an opportunity to strengthen intermodal solutions as part of an integrated and more sustainable transport chain, acting as a link between road and railway networks. In this sense, implementation of dry ports allows the separation of the links of the transport chain, thus facilitating the shortest possible routes for the lowest capacity and most polluting means of transport. Thus, the decision of where to locate a dry port demands a thorough analysis of the whole logistics supply chain, with the objective of transferring the largest volume of goods possible from road to more energy efficient means of transport, like rail or short-sea shipping, that are less harmful to the environment. However, the decision of where to locate a dry port must also ensure the sustainability of the site. Thus, the main goal of this article is to research the variables influencing the sustainability of dry port location and how this sustainability can be evaluated. With this objective, in this paper we present a methodology for assessing the sustainability of locations by the use of Multi-Criteria Decision Analysis (MCDA) and Bayesian Networks (BNs). MCDA is used as a way to establish a scoring, whilst BNs were chosen to eliminate arbitrariness in setting the weightings using a technique that allows us to prioritize each variable according to the relationships established in the set of variables. In order to determine the relationships between all the variables involved in the decision, giving us the importance of each factor and variable, we built a K2 BN algorithm. To obtain the scores of each variable, we used a complete cartography analysed by ArcGIS. Recognising that setting the most appropriate location to place a dry port is a geographical multidisciplinary problem, with significant economic, social and environmental implications, we consider 41 variables (grouped into 17 factors) which respond to this need. As a case of study, the sustainability of all of the 10 existing dry ports in Spain has been evaluated. In this set of logistics platforms, we found that the most important variables for achieving sustainability are those related to environmental protection, so the sustainability of the locations requires a great respect for the natural environment and the urban environment in which they are framed.