958 resultados para propagation of analytic singularities
Resumo:
Background: Sertoli cells play a pivotal role in creating microenvironments essential for spermatogonial stem cells (SSCs) self-renewal and commitment to differentiation. Maintenance of SSCs and or induction of in vitro spermiogenesis may provide a therapeutic strategy to treat male infertility. Objective: This study investigated the role of luekemia inhibitory factor (LIF) on the propagation of SSCs and both functions of Sertoli cells on the proliferation and differentiation of these cells. Materials and Methods: SSCs were sorted from the testes of adult male mice by magnetic activated cell sorting and thymus cell antigen 1 antibody. On the other hand, isolated Sertoli cells were enriched using lectin coated plates. SSCs were cultured on Sertoli cells for 7 days in the absence or presence of LIF. The effects of these conditions were evaluated by microscopy and expression of meiotic and post meiotic transcripts by reverse transcriptase polymerase chain reaction. Results: Our data showed that SSCs co-cultured with Sertoli cells in the presence of LIF formed colonies on top of the Sertoli cells. These colonies had alkaline phosphatesase activity and expressed SSCs specific genes. SSCs were enjoyed limited development after the mere removal of LIF, and exhibiting expression of meiotic and postmeiotic transcript and loss of SSCs specific gene expression (p< 0.05). Conclusion: Our findings represent co-culture of SSCs with Sertoli cells provides conditions that may allow efficient proliferation and differentiation of SSCs for male infertility treatment.
Resumo:
Cecropia glaziovii is a tree with used in Brazilian popular medicine. Methods allowing the clonal propagation of this species are of great interest for superior genotype multiplication and perpetuation. For this reason, we examined the effect of different culture media and different types of explants on adventitious shoot regeneration from callus and buds of C. glaziovii. Leaves, petioles and stipules obtained from aseptically grown seedlings or from pre-sterilized plants were used to initiate cultures. Adventitious shoot regeneration was achieved when apical and axillary buds were inoculated on gelled Murashige & Skoog (MS) medium supplemented with 6-benzylaminopurine alone (BAP) (1.0, 5.0 or 10.0 mg L-1) or combined with -naphthalene acetic acid (NAA) (1.0 or 2.0 mg L-1), after 40 days of culture. Best callus production was obtained after 30 days of petioles' culture on gelled MS medium with 2,4 dichlorophenoxyacetic acid (2,4-D) (5.0 mg L-1) combined with BAP (1.0 mg L-1). Successful shoot regeneration from callus was achieved when MS medium supplemented with zeatin (ZEA) (0.1 mg L-1) alone or combined with 2,4-D (1.0 or 5.0 mg L-1) was inoculated with friable callus obtained from petioles. All shoots were rooted by inoculation on MS medium supplemented with indole-3-acetic acid (IAA) (1.0 mg L-1). Rooted plants transferred to potting soil were successfully established. All in vitro regenerated plantlets showed to be normal, without morphological variations, being also identical to the source plant. Our study has shown that C. glaziovii can be propagated by tissue culture methods, allowing large scale multiplication of superior plants for pharmacological purposes.
Resumo:
OBJECTIVE: To investigate the expression of SMAD proteins in human thyroid tissues since the inactivation of TGF-β/activin signaling components is reported in several types of cancer. Phosphorylated SMAD 2 and SMAD3 (pSMAD2/3) associated with the SMAD4 induce the signal transduction generated by TGF-β and activin, while SMAD7 inhibits this intracellular signaling. Although TGF-β and activin exert antiproliferative roles in thyroid follicular cells, thyroid tumors express high levels of these proteins. MATERIALS AND METHODS: The protein expression of SMADs was evaluated in multinodular goiter, follicular adenoma, papillary and follicular carcinomas by immunohistochemistry. RESULTS: The expression of pSMAD2/3, SMAD4 and SMAD7 was observed in both benign and malignant thyroid tumors. Although pSMAD2/3, SMAD4 and SMAD7 exhibited high cytoplasmic staining in carcinomas, the nuclear staining of pSMAD2/3 was not different between benign and malignant lesions. CONCLUSIONS: The finding of SMADs expression in thyroid cells and the presence of pSMAD2/3 and SMAD4 proteins in the nucleus of tumor cells indicates propagation of TGF-β/activin signaling. However, the high expression of the inhibitory SMAD7, mostly in malignant tumors, could contribute to the attenuation of the SMADs antiproliferative signaling in thyroid carcinomas.
Resumo:
Compartmental epidemiological models have been developed since the 1920s and successfully applied to study the propagation of infectious diseases. Besides, due to their structure, in the 1960s an interesting version of these models was developed to clarify some aspects of rumor propagation, considering that spreading an infectious disease or disseminating information is analogous phenomena. Here, in an analogy with the SIR (Susceptible-Infected-Removed) epidemiological model, the ISS (Ignorant-Spreader-Stifler) rumor spreading model is studied. By using concepts from the Dynamical Systems Theory, stability of equilibrium points is established, according to propagation parameters and initial conditions. Some numerical experiments are conducted in order to validate the model.
Resumo:
Based on previous results obtained from observations and linear wave theory analysis, the hypothesis that large-scale patterns can generate extreme cold events in southeast South America through the propagation of remotely excited Rossby waves was already suggested. This work will confirm these findings and extend their analysis through a series of numerical experiments using a primitive equation model where waves are excited by a thermal forcing situated in positions chosen according to observed convection anomalies over the equatorial region. The basic state used for these experiments is a composite of austral winters with maximum and minimum frequency of occurrence of generalized frosts that can affect a large area known as the Wet Pampas located in the central and eastern part of Argentina. The results suggest that stationary Rossby waves may be one important mechanism linking anomalous tropical convection with the extreme cold events in the Wet Pampas. The combination of tropical convection and a specific basic state can generate the right environment to guide the Rossby waves trigged by the tropical forcing towards South America. Depending on the phase of the waves entering the South American continent, they can favour the advection of anomalous wind at low levels from the south carrying cold and dry air over the whole southern extreme of the continent, producing a generalized frost in the Wet Pampa region. On the other hand, when a basic state based on the composites of minimum frosts is used, an anomalous anticyclone over the southern part of the continent generates a circulation with a south-southeast wind which brings maritime air and therefore humidity over the Wet Pampas region, creating negative temperature anomalies only over the northeastern part of the region. Under these conditions even if frosts occur they would not be generalized, as observed for the other basic state with maximum frequency of occurrence of generalized frosts.
Resumo:
The VISTA near infrared survey of the Magellanic System (VMC) will provide deep YJK(s) photometry reaching stars in the oldest turn-off point throughout the Magellanic Clouds (MCs). As part of the preparation for the survey, we aim to access the accuracy in the star formation history (SFH) that can be expected from VMC data, in particular for the Large Magellanic Cloud (LMC). To this aim, we first simulate VMC images containing not only the LMC stellar populations but also the foreground Milky Way (MW) stars and background galaxies. The simulations cover the whole range of density of LMC field stars. We then perform aperture photometry over these simulated images, access the expected levels of photometric errors and incompleteness, and apply the classical technique of SFH-recovery based on the reconstruction of colour-magnitude diagrams (CMD) via the minimisation of a chi-squared-like statistics. We verify that the foreground MW stars are accurately recovered by the minimisation algorithms, whereas the background galaxies can be largely eliminated from the CMD analysis due to their particular colours and morphologies. We then evaluate the expected errors in the recovered star formation rate as a function of stellar age, SFR(t), starting from models with a known age-metallicity relation (AMR). It turns out that, for a given sky area, the random errors for ages older than similar to 0.4 Gyr seem to be independent of the crowding. This can be explained by a counterbalancing effect between the loss of stars from a decrease in the completeness and the gain of stars from an increase in the stellar density. For a spatial resolution of similar to 0.1 deg(2), the random errors in SFR(t) will be below 20% for this wide range of ages. On the other hand, due to the lower stellar statistics for stars younger than similar to 0.4 Gyr, the outer LMC regions will require larger areas to achieve the same level of accuracy in the SFR( t). If we consider the AMR as unknown, the SFH-recovery algorithm is able to accurately recover the input AMR, at the price of an increase of random errors in the SFR(t) by a factor of about 2.5. Experiments of SFH-recovery performed for varying distance modulus and reddening indicate that these parameters can be determined with (relative) accuracies of Delta(m-M)(0) similar to 0.02 mag and Delta E(B-V) similar to 0.01 mag, for each individual field over the LMC. The propagation of these errors in the SFR(t) implies systematic errors below 30%. This level of accuracy in the SFR(t) can reveal significant imprints in the dynamical evolution of this unique and nearby stellar system, as well as possible signatures of the past interaction between the MCs and the MW.
Resumo:
We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving-field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific to (Zeeman) multilevel configurations are identified.
Resumo:
The Sznajd model is a sociophysics model that mimics the propagation of opinions in a closed society, where the interactions favor groups of agreeing people. It is based in the Ising and Potts ferromagnetic models and, although the original model used only linear chains, it has since been adapted to general networks. This model has a very rich transient, which has been used to model several aspects of elections, but its stationary states are always consensus states. In order to model more complex behaviors, we have, in a recent work, introduced the idea of biases and prejudices to the Sznajd model by generalizing the bounded confidence rule, which is common to many continuous opinion models, to what we called confidence rules. In that work we have found that the mean field version of this model (corresponding to a complete network) allows for stationary states where noninteracting opinions survive, but never for the coexistence of interacting opinions. In the present work, we provide networks that allow for the coexistence of interacting opinions for certain confidence rules. Moreover, we show that the model does not become inactive; that is, the opinions keep changing, even in the stationary regime. This is an important result in the context of understanding how a rule that breeds local conformity is still able to sustain global diversity while avoiding a frozen stationary state. We also provide results that give some insights on how this behavior approaches the mean field behavior as the networks are changed.
Resumo:
Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.
Resumo:
We show that the common singularities present in generic modified gravity models governed by actions of the type S = integral d(4)x root-gf(R, phi, X). with X = -1/2 g(ab)partial derivative(a)phi partial derivative(b)phi, are essentially the same anisotropic instabilities associated to the hypersurface F(phi) = 0 in the case of a nonminimal coupling of the type F(phi)R, enlightening the physical origin of such singularities that typically arise in rather complex and cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities typically give rise to dynamically unavoidable singularities, precluding completely the possibility of having physically viable models for which the hypersurface partial derivative f/partial derivative R = 0 is attained. Some examples are explicitly discussed.
Resumo:
Biological neuronal networks constitute a special class of dynamical systems, as they are formed by individual geometrical components, namely the neurons. In the existing literature, relatively little attention has been given to the influence of neuron shape on the overall connectivity and dynamics of the emerging networks. The current work addresses this issue by considering simplified neuronal shapes consisting of circular regions (soma/axons) with spokes (dendrites). Networks are grown by placing these patterns randomly in the two-dimensional (2D) plane and establishing connections whenever a piece of dendrite falls inside an axon. Several topological and dynamical properties of the resulting graph are measured, including the degree distribution, clustering coefficients, symmetry of connections, size of the largest connected component, as well as three hierarchical measurements of the local topology. By varying the number of processes of the individual basic patterns, we can quantify relationships between the individual neuronal shape and the topological and dynamical features of the networks. Integrate-and-fire dynamics on these networks is also investigated with respect to transient activation from a source node, indicating that long-range connections play an important role in the propagation of avalanches.
Resumo:
The selection criteria for Euler-Bernoulli or Timoshenko beam theories are generally given by means of some deterministic rule involving beam dimensions. The Euler-Bernoulli beam theory is used to model the behavior of flexure-dominated (or ""long"") beams. The Timoshenko theory applies for shear-dominated (or ""short"") beams. In the mid-length range, both theories should be equivalent, and some agreement between them would be expected. Indeed, it is shown in the paper that, for some mid-length beams, the deterministic displacement responses for the two theories agrees very well. However, the article points out that the behavior of the two beam models is radically different in terms of uncertainty propagation. In the paper, some beam parameters are modeled as parameterized stochastic processes. The two formulations are implemented and solved via a Monte Carlo-Galerkin scheme. It is shown that, for uncertain elasticity modulus, propagation of uncertainty to the displacement response is much larger for Timoshenko beams than for Euler-Bernoulli beams. On the other hand, propagation of the uncertainty for random beam height is much larger for Euler beam displacements. Hence, any reliability or risk analysis becomes completely dependent on the beam theory employed. The authors believe this is not widely acknowledged by the structural safety or stochastic mechanics communities. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Geosynthetics interlayer systems are effective techniques to control reflective cracking in damaged pavements. It comprises the inclusion of nonwoven geotextiles between the damaged layer and the new overlay of the pavement to reduce the propagation of cracks and to extend pavement life. However, the success of this technique depends directly on the understanding of the geotextile`s behavior when impregnated with asphalt This paper evaluates different nonwoven geotextiles frequently used in anti-reflective cracking systems, focusing on initial stiffness gain and permeability reduction after asphalt impregnation. Fresh and impregnated samples of polyester and polypropylene nonwoven geotextiles were tested. Cationic rapid setting emulsified asphalt was used as asphalt binder. Wide-width tensile tests were carried out based on the specification of ABNT - NBR 12824 (1993). Water vapor transmission tests were conducted according to ASTM E 96M (2005). Results of tensile tests on impregnated geotextiles showed a significant increase on tensile strength values, probably due to the inter contact of the fibers. Results also showed high increase in strength values at strain levels less than 0.05% and decrease on stiffness gains with increase of strains. Water vapor transmission tests demonstrated that cationic asphalt emulsion applied on nonwoven geotextiles allows a drastic reduction in permeability values to turn nonwoven geotextiles into a low permeability barrier. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The effect of different microstructures on the polarization resistance (Rp) and the hydrogen-induced cracking (HIC) of a micro-alloyed steel austenitized and submitted to different cooling rates was studied. Samples 19.1 x 6 x 2 mm, containing the whole thickness of the plate were extracted from a 20 mm plate and heat treated on a quenching dilatometer, were submitted to Rp and HIC corrosion tests. Both Rp and HIC tests followed as close as possible ASTM G59 and NACE standard TM0284-2003, in this case, modified only with regard to the size of the samples. Steel samples transformed from austenite by a slow cooling (cooling rate of 0.5 degrees C.s(-1)) showed higher susceptibility to hydrogen-induced cracking, with large cracks in the middle of the sample propagating along segregation bands, corresponding to the centerline of the plate thickness. For cooling rates of 10 degrees C.s(-1), only small cracks were found in the matrix and micro cracks nucleated at non-metallic inclusions. For higher cooling rates (40 degrees C.s(-1)) very few small cracks were detected, linked to non-metallic inclusions. This result suggests that structures formed by polygonal structures and segregation bands (were cutectoid microconstituents predominate) have higher susceptibility to HIC. Structures predominantly formed by acicular ferrite make it difficult to propagate the cracks among non-oriented and interlaced acicular ferrite crystals. Smaller segregation bands containing eutectoid products also help inhibit cracking and crack propagation; segregation bands can function as pipelines for hydrogen diffusion and offer a path of stress concentration for the propagation of cracks, frequently associated to non-metallic inclusions. Polarization resistance essays performed on the steel in theas received condition, prior to any heat treatment, showed larger differences between the regions of the plate, with a considerably lower Rp in the centerline. The austenitization heat treatments followed by cooling rates of 0.5 e 10 degrees C.s(-1) made more uniform the corrosion resistance along the thickness of the plate. The effects of heat treatments on the corrosion resistance are probably related to the microconstituent formed, allied to the chemical homogenization of the impurities concentrated on the centerline of the plate.
Resumo:
There are several ways of controlling the propagation of a contagious disease. For instance, to reduce the spreading of an airborne infection, individuals can be encouraged to remain in their homes and/or to wear face masks outside their domiciles. However, when a limited amount of masks is available, who should use them: the susceptible subjects, the infective persons or both populations? Here we employ susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations and probabilistic cellular automata in order to investigate how the deletion of links in the random complex network representing the social contacts among individuals affects the dynamics of a contagious disease. The inspiration for this study comes from recent discussions about the impact of measures usually recommended by health public organizations for preventing the propagation of the swine influenza A (H1N1) virus. Our answer to this question can be valid for other eco-epidemiological systems. (C) 2010 Elsevier BM. All rights reserved.