897 resultados para product design optimality
Resumo:
ABSTRACT ONTOLOGIES AND METHODS FOR INTEROPERABILITY OF ENGINEERING ANALYSIS MODELS (EAMS) IN AN E-DESIGN ENVIRONMENT SEPTEMBER 2007 NEELIMA KANURI, B.S., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCES PILANI INDIA M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ian Grosse Interoperability is the ability of two or more systems to exchange and reuse information efficiently. This thesis presents new techniques for interoperating engineering tools using ontologies as the basis for representing, visualizing, reasoning about, and securely exchanging abstract engineering knowledge between software systems. The specific engineering domain that is the primary focus of this report is the modeling knowledge associated with the development of engineering analysis models (EAMs). This abstract modeling knowledge has been used to support integration of analysis and optimization tools in iSIGHT FD , a commercial engineering environment. ANSYS , a commercial FEA tool, has been wrapped as an analysis service available inside of iSIGHT-FD. Engineering analysis modeling (EAM) ontology has been developed and instantiated to form a knowledge base for representing analysis modeling knowledge. The instances of the knowledge base are the analysis models of real world applications. To illustrate how abstract modeling knowledge can be exploited for useful purposes, a cantilever I-Beam design optimization problem has been used as a test bed proof-of-concept application. Two distinct finite element models of the I-beam are available to analyze a given beam design- a beam-element finite element model with potentially lower accuracy but significantly reduced computational costs and a high fidelity, high cost, shell-element finite element model. The goal is to obtain an optimized I-beam design at minimum computational expense. An intelligent KB tool was developed and implemented in FiPER . This tool reasons about the modeling knowledge to intelligently shift between the beam and the shell element models during an optimization process to select the best analysis model for a given optimization design state. In addition to improved interoperability and design optimization, methods are developed and presented that demonstrate the ability to operate on ontological knowledge bases to perform important engineering tasks. One such method is the automatic technical report generation method which converts the modeling knowledge associated with an analysis model to a flat technical report. The second method is a secure knowledge sharing method which allocates permissions to portions of knowledge to control knowledge access and sharing. Both the methods acting together enable recipient specific fine grain controlled knowledge viewing and sharing in an engineering workflow integration environment, such as iSIGHT-FD. These methods together play a very efficient role in reducing the large scale inefficiencies existing in current product design and development cycles due to poor knowledge sharing and reuse between people and software engineering tools. This work is a significant advance in both understanding and application of integration of knowledge in a distributed engineering design framework.
Resumo:
Purpose: In this work, we present the analysis, design and optimization of one experimental device recently developed in the UK, called the 'GP' Thrombus Aspiration Device (GPTAD). This device has been designed to remove blood clots without the need to make contact with the clot itself thereby potentially reducing the risk of problems such as downstream embolisation. Method: To obtain the minimum pressure necessary to extract the clot and to optimize the device, we have simulated the performance of the GPTAD analysing the resistances, compliances and inertances effects. We model a range of diameters for the GPTAD considering different forces of adhesion of the blood clot to the artery wall, and different lengths of blood clot. In each case we determine the optimum pressure required to extract the blood clot from the artery using the GPTAD, which is attached at its proximal end to a suction pump. Result: We then compare the results of our mathematical modelling to measurements made in laboratory using plastic tube models of arteries of comparable diameter. We use abattoir porcine blood clots that are extracted using the GPTAD. The suction pressures required for such clot extraction in the plastic tube models compare favourably with those predicted by the mathematical modelling. Discussion & Conclusion: We conclude therefore that the mathematical modelling is a useful technique in predicting the performance of the GPTAD and may potentially be used in optimising the design of the device.
Resumo:
This paper disputes the fact that product design determines 70% of costs and the implications that follow for design evaluation tools. Using the idea of decision chains, it is argued that such tools need to consider more of the downstream business activities and should take into account the current and future state of the business rather than some idealized view of it. To illustrate the argument, a series of experiments using an enterprise simulator are described that show the benefit from the application of a more holistic 'design for' technique. Design For the Existing Environment.
Resumo:
Product design decisions can have a significant impact on the financial and operation performance of manufacturing companies. Therefore good analysis of the financial impact of design decisions is required if the profitability of the business is to be maximised. The product design process can be viewed as a chain of decisions which links decisions about the concept to decisions about the detail. The idea of decision chains can be extended to include the design and operation of the 'downstream' business processes which manufacture and support the product. These chains of decisions are not independent but are interrelated in a complex manner. To deal with the interdependencies requires a modelling approach which represents all the chains of decisions, to a level of detail not normally considered in the analysis of product design. The operational, control and financial elements of a manufacturing business constitute a dynamic system. These elements interact with each other and with external elements (i.e. customers and suppliers). Analysing the chain of decisions for such an environment requires the application of simulation techniques, not just to any one area of interest, but to the whole business i.e. an enterprise simulation. To investigate the capability and viability of enterprise simulation an experimental 'Whole Business Simulation' system has been developed. This system combines specialist simulation elements and standard operational applications software packages, to create a model that incorporates all the key elements of a manufacturing business, including its customers and suppliers. By means of a series of experiments, the performance of this system was compared with a range of existing analysis tools (i.e. DFX, capacity calculation, shop floor simulator, and business planner driven by a shop floor simulator).
Resumo:
Interest is growing around the application of lean techniques to new product introduction (NPI). Although a relatively emergent topic compared with the application of ‘lean’ within the factory, since 2000 there has been an exponential rise in the literature on this subject. However, much of this work focuses on describing and extolling the virtues of the ‘Toyota approach’ to design. Therefore, by way of a stock take for the UK, the present authors' research has set out to understand how well lean product design practices have been adopted by leading manufacturers. This has been achieved by carrying out in-depth case studies with three carefully selected manufacturers of complex engineered products. This paper describes these studies, the detailed results and subsequent findings, and concludes that both the awareness and adoption of practices is generally embryonic and far removed from the theory advocated in the literature.
Resumo:
As the existing team literature mostly excludes context and culture, little is known about how these elements affect real-life team working (Engestrom, 2008; Salas & Wildman, 2009), and how teams work in non-Western settings, such as in Chinese firms (Phan, Zhou, & Abrahamson, 2010).This research addresses this issue by investigating how new product design (NPD) teams use team working to carry out product innovation in the context of Chinese family businesses (CFBs) via an indigenous psychology perspective. Unlike mainstream teamwork literature which mostly employs an etic design, an indigenous psychology perspective adopts an emic approach which places emphasis on understanding real-life phenomena in context through a cultural-insider perspective (Kim, 2000). Compatible with this theoretical position, a multiple qualitative case study approach was used as the research methodology. Three qualitative case studies were carried out in three longstanding family-run manufacturing firms in Taiwan, where family firms have been the pillars of high economic growth in the past five decades (W.-w. Chu, 2009). Two salient findings were established across the three case studies. First, the team processes identified across the three family firms are very similar with the exception of owners’ involvement and on-the-job training. All three family firms’ NPD teams are managed in a highly hierarchical manner, with considerable emphasis placed on hierarchical ranking, cost-effectiveness, efficiency, practicability, and interpersonal harmony. Second, new products developed by CFBNPD teams are mostly incremental innovation or copycat innovation, while radical or original products are rare. In many ways, CFBNPD teams may not be the ideal incubators for innovation. This is because several aspects of their unique context can cast constraints on how they work and innovate, and thus limit the ratio of radical innovation. A multi-level review into the facilitators and inhibitors of creativity or innovation in CFBNPD teams is provided. The theoretical and practical implications of the findings and the limitations of the study are also addressed.
Resumo:
Design and Designing provides a broad and critical understanding of what is essentially a practical subject. Designing today is less a craft and more a part of the knowledge economy. It's all about knowing how to acquire knowledge and how to apply it creatively. Design and Designing covers the design process, modelling and drawing, working with clients, production and consumption, sustainability, professional practice and design futures. Chapters are written by expert teachers and practitioners from around the globe, each presenting an accessible and engaging overview of their field of design. Every chapter is highly illustrated with a combination of images and information boxes, which extend or highlight key material. Each section concludes with a design project, a hands-on activity for the reader. Design and Designing covers the full spectrum of design types, from graphic communication to product design, from fashion to games design, setting every type in its aesthetic, ethical and social contexts. With this essential book, readers will learn from today's best practice and best thinking in design, they will develop a critical sense, and become the designers of tomorrow.
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
Design methods and tools are generally best learned and developed experientially [1]. Finding appropriate vehicles for delivering these to students is becoming increasingly challenging, especially when considering only those that will enthuse, intrigue and inspire. This paper traces the development of different eco-car design and build projects which competed in the Shell Eco-Marathon. The cars provided opportunities for experiential learning through a formal learning cycle of CDIO (Conceive, Design, Implement, Operate) or the more traditional understand, explore, create, validate, with both teams developing a functional finished prototype. Lessons learned were applied through the design of a third and fourth eco-car using experimental techniques with bio-composites, combining the knowledge of fibre reinforced composite materials and adhesives with the plywood construction techniques of the two teams. The paper discusses the importance of applying materials and techniques to a real world problem. It will also explore how eco-car and comparing traditional materials and construction techniques with high tech composite materials is an ideal teaching, learning and assessment vehicle for technical design techniques.
Resumo:
The automotive industry combines a multitude of professionals to develop a modern car successfully. Within the design and development teams the collaboration and interface between Engineers and Designers is critical to ensure design intent is communicated and maintained throughout the development process. This study highlights recent industry practice with the emergence of Concept Engineers in design teams at Jaguar Land Rover Automotive group. The role of the Concept Engineer emphasises the importance of the Engineering and Design/Styling interface with the Concept engineer able to interact and understand the challenges and specific languages of each specialist area, hence improving efficiency and communication within the design team. Automotive education tends to approach design from two distinct directions, that of engineering design through BSc courses or a more styling design approach through BA and BDes routes. The educational challenge for both types of course is to develop engineers and stylist's who have greater understanding and experience of each other's specialist perspective of design and development. The study gives examples of two such courses in the UK who are developing programmes to help students widen their understanding of the engineering and design spectrum. Initial results suggest the practical approach has been well received by students and encouraged by industry as they seek graduates with specialist knowledge but also a wider appreciation of their role within the design process.
Resumo:
Studio e progettazione di una nuova ruota per arredi da ufficio dal design innovativo. La ruota si differenzia per essere una tipologia Hub-less (senza mozzo), dotata di un carter che la protegge da polveri e corpi esterni e un sistema di riduzione dell'attrito che aiuta l'utente a muoversi in completa libertà.
Resumo:
This study examines the effect of individual character types in design teams through case studies at ARUP associates and five United Kingdom university design degree programmes. By observing an individual's approach and contribution within a team, patterns of design behaviour are highlighted and compared within the industrial and academic examples. Initial findings have identified discreet differences in design approach and ways of working. By identifying these initial character clusters, design behaviour can be predicted to help teams and individuals to strengthen their design process. This research brings together: 1. The design process and how engineering and design teams work to solve problems. 2. The natural characteristics of individuals and how they approach problems. This difference of approach can be viewed in relation to the design process where engineers and designers will recognise their preference for certain stages of the design process. This study suggests that these individual preferences are suited to different stages of the design process, and that industry uses teams to ensure a broad range of views, an approach design education would do well to apply by establishing collaborative input in the design process.
Resumo:
Histone deacetylases (HDACs) have been shown to play key roles in tumorigenesis, and
have been validated as effective enzyme target for cancer treatment. Largazole, a marine natural
product isolated from the cyanobacterium Symploca, is an extremely potent HDAC inhibitor that
has been shown to possess high differential cytotoxicity towards cancer cells along with excellent
HDAC class-selectivity. However, improvements can be made in the isoform-selectivity and
pharmacokinetic properties of largazole.
In attempts to make these improvements and furnish a more efficient biochemical probe
as well as a potential therapeutic, several largazole analogues have been designed, synthesized,
and tested for their biological activity. Three different types of analogues were prepared. First,
different chemical functionalities were introduced at the C2 position to probe the class Iselectivity profile of largazole. Additionally, docking studies led to the design of a potential
HDAC8-selective analogue. Secondly, the thiol moiety in largazole was replaced with a wide
variety of othe zinc-binding group in order to probe the effect of Zn2+ affinity on HDAC
inhibition. Lastly, three disulfide analogues of largazole were prepared in order to utilize a
different prodrug strategy to modulate the pharmacokinetic properties of largazole.
Through these analogues it was shown that C2 position can be modified significantly
without a major loss in activity while also eliciting minimal changes in isoform-selectivity. While
the Zn2+-binding group plays a major role in HDAC inhibition, it was also shown that the thiol
can be replaced by other functionalities while still retaining inhibitory activity. Lastly, the use of
a disulfide prodrug strategy was shown to affect pharmacokinetic properties resulting in varying
functional responses in vitro and in vivo.
v
Largazole is already an impressive HDAC inhibitor that shows incredible promise.
However, in order to further develop this natural product into an anti-cancer therapeutic as well as
a chemical probe, improvements in the areas of pharmacokinetics as well as isoform-selectivity
are required. Through these studies we plan on building upon existing structure–activity
relationships to further our understanding of largazole’s mechanism of inhibition so that we may
improve these properties and ultimately develop largazole into an efficient HDAC inhibitor that
may be used as an anti-cancer therapeutic as well as a chemical probe for the studying of
biochemical systems.
Resumo:
Using product and system design to influence user behaviour offers potential for improving performance and reducing user error, yet little guidance is available at the concept generation stage for design teams briefed with influencing user behaviour. This article presents the Design with Intent Method, an innovation tool for designers working in this area, illustrated via application to an everyday human–technology interaction problem: reducing the likelihood of a customer leaving his or her card in an automatic teller machine. The example application results in a range of feasible design concepts which are comparable to existing developments in ATM design, demonstrating that the method has potential for development and application as part of a user-centred design process.