908 resultados para process dynamics
Resumo:
This paper explores the adoption of a whole system approach to a more sustainable and innovative design. A case study methodology was utilised to gain improved understanding of whole system design and those factors that substantially influence its success. The paper presents a framework of those factors including the requirement for trans-disciplinary skills, the dynamics of a flattened hierarchy and the need to identify relationships between parts of the system to ultimately optimise the whole. Knowing the factors that influence the process of whole system design provides designers with the knowledge necessary to more effectively work within, manage and facilitate that process. This paper uses anecdotes taken from operational cases, across design contexts, to demonstrate those factors. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
We use multispeckle diffusive wave spectroscopy to probe the micron-scale dynamics of a water-saturated granular pile submitted to discrete gentle taps. The typical time scale between plastic events is found to increase dramatically with the number of applied taps. Furthermore, this microscopic dynamics weakly depends on the solid fraction of the sample. This process is largely analogous to the aging phenomenon observed in thermal glassy systems. We propose a heuristic model where this slowing-down mechanism is associated with a slow evolution of the distribution of the contact forces between particles. This model accounts for the main features of the observed dynamics.
Resumo:
Predicting the response of a structure following an impact is of interest in situations where parts of a complex assembly may come into contact. Standard approaches are based on the knowledge of the impulse response function, requiring the knowledge of the modes and the natural frequencies of the structure. In real engineering structures the statistics of higher natural frequencies follows those of the Gaussian Orthogonal Ensemble, this allows the application of random point process theory to get a mean impulse response function by the knowledge of the modal density of the structure. An ensemble averaged time history for both the response and the impact force can be predicted. Once the impact characteristics are known in the time domain, a simple Fourier Transform allows the frequency range of the impact excitation to be calculated. Experimental and numerical results for beams, plates, and cylinders are presented to confirm the validity of the method.
Resumo:
The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation. The major difficulties, including load torque estimation and separation of pressure profile from adjacent-firing cylinders, are addressed in this work and solutions to each problem are given respectively. The experimental results conducted on a multi-cylinder diesel engine have shown that the proposed method successfully estimate a more accurate cylinder pressure over a wider range of crankshaft angles. Copyright © 2012 SAE International.
Resumo:
Measurements of particulate matter (PM) from spark ignition (SI) engine exhaust using dilution tunnels will become more prevalent as emission standards are tightened. Hence, a study of the dilution process was undertaken in order to understand how various dilution related parameters affect the accuracy with which PM sizes and concentrations can be determined. A SI and a compression ignition (CI) engine were separately used to examine parameters of the dilution process; the present work discusses the results in the context of SI exhaust dilution. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution, number density, and volume fraction of PM. Temperature measurements in the exhaust pipe and dilution tunnel reveal the degree of mixing between exhaust and dilution air, the effect of flowrate on heat transfer from undiluted and diluted exhaust to the environment, and the minimum permissible dilution ratio for a maximum sample temperature of 52°C. Measurements of PM concentrations as a function of dilution ratio show the competing effects of temperature and particle/vapor concentrations on particle growth dynamics, which result in a range of dilution ratios-from 13 to 18-where the effect of dilution ratio, independent of flowrate, is kept to a minimum. This range of dilution ratios is therefore optimal in order to achieve repeatable PM concentration measurements. Particle dynamics during transit through the tunnel operating at the optimal dilution ratio was found statistically insignificant compared to data scatter. Such small differences in number concentration may be qualitatively representative of particle losses for SI exhaust, but small increases in PM volume fraction during transit through the tunnel may significantly underestimate accretion of mass due to unburned hydrocarbons (HCs) emitted by SI engines. The fraction of SI-derived PM mass due to adsorbed/absorbed vapor, estimated from these data, is consistent with previous chemical analyses of PM. © 1998 Society of Automotive Engineers, Inc.
Resumo:
The utilisation of computational fluid dynamics (CFD) in process safety has increased significantly in recent years. The modelling of accidental explosion via CFD has in many cases replaced the classical Multi Energy and Brake Strehlow methods. The benefits obtained with CFD modelling can be diminished if proper modelling of the initial phase of explosion is neglected. In the early stages of an explosion, the flame propagates in a quasi-laminar regime. Proper modelling of the initial laminar phase is a key aspect in order to predict the peak pressure and the time to peak pressure. The present work suggests a modelling approach for the initial laminar phase in explosion scenarios. Findings are compared with experimental data for two classical explosion test cases which resemble the common features in chemical process areas (confinement and congestion). A detailed analysis of the threshold for the transition from laminar to turbulent regime is also carried out. The modelling is implemented in a fully 3D Navier-Stokes compressible formulation. Combustion is treated using a laminar flamelet approach based on the Bray, Moss and Libby (BML) formulation. A novel modified porosity approach developed for the unstructured solver is also considered. Results agree satisfactorily with experiments and the modelling is found to be robust. © 2013 The Institution of Chemical Engineers.
Resumo:
This paper studies the dynamical response of a rotary drilling system with a drag bit, using a lumped parameter model that takes into consideration the axial and torsional vibration modes of the bit. These vibrations are coupled through a bit-rock interaction law. At the bit-rock interface, the cutting process introduces a state-dependent delay, while the frictional process is responsible for discontinuous right-hand sides in the equations governing the motion of the bit. This complex system is characterized by a fast axial dynamics compared to the slow torsional dynamics. A dimensionless formulation exhibits a large parameter in the axial equation, enabling a two-time-scales analysis that uses a combination of averaging methods and a singular perturbation approach. An approximate model of the decoupled axial dynamics permits us to derive a pseudoanalytical expression of the solution of the axial equation. Its averaged behavior influences the slow torsional dynamics by generating an apparent velocity weakening friction law that has been proposed empirically in earlier work. The analytical expression of the solution of the axial dynamics is used to derive an approximate analytical expression of the velocity weakening friction law related to the physical parameters of the system. This expression can be used to provide recommendations on the operating parameters and the drillstring or the bit design in order to reduce the amplitude of the torsional vibrations. Moreover, it is an appropriate candidate model to replace empirical friction laws encountered in torsional models used for control. © 2009 Society for Industrial and Applied Mathematics.
Resumo:
An understanding of how pathogens colonize their hosts is crucial for the rational design of vaccines or therapy. While the molecular factors facilitating the invasion and systemic infection by pathogens are a central focus of research in microbiology, the population biological aspects of colonization are still poorly understood. Here, we investigated the early colonization dynamics of Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in the streptomycin mouse model for diarrhea. We focused on the first step on the way to systemic infection - the colonization of the cecal lymph node (cLN) from the gut - and studied roles of inflammation, dendritic cells and innate immune effectors in the colonization process. To this end, we inoculated mice with mixtures of seven wild type isogenic tagged strains (WITS) of S. Tm. The experimental data were analyzed with a newly developed mathematical model describing the stochastic immigration, replication and clearance of bacteria in the cLN. We estimated that in the beginning of infection only 300 bacterial cells arrive in the cLN per day. We further found that inflammation decreases the net replication rate in the cLN by 23%. In ccr7-/- mice, in which dendritic cell movement is impaired, the bacterial migration rate was reduced 10-fold. In contrast, cybb-/- mice that cannot generate toxic reactive oxygen species displayed a 4-fold higher migration rate from gut to cLN than wild type mice. Thus, combining infections with mixed inocula of barcoded strains and mathematical analysis represents a powerful method for disentangling immigration into the cLN from replication in this compartment. The estimated parameters provide an important baseline to assess and predict the efficacy of interventions. © 2013 Kaiser et al.
Resumo:
Traditional microbiological and immunological tools, combined with modern imaging, and molecular and mathematical approaches, have revealed the dispersive nature of Salmonella infections. Bacterial escape from infected cells, spread in the tissues and attempts to restrain this process by the host give rise to fascinating scenarios that underpin the pathogenesis of salmonelloses.
Resumo:
Traditional microbiological and immunological tools, combined with modern imaging, and molecular and mathematical approaches, have revealed the dispersive nature of Salmonella infections. Bacterial escape from infected cells, spread in the tissues and attempts to restrain this process by the host give rise to fascinating scenarios that underpin the pathogenesis of salmonelloses. © 2013 Institut Pasteur.
Resumo:
State-space models are successfully used in many areas of science, engineering and economics to model time series and dynamical systems. We present a fully Bayesian approach to inference and learning (i.e. state estimation and system identification) in nonlinear nonparametric state-space models. We place a Gaussian process prior over the state transition dynamics, resulting in a flexible model able to capture complex dynamical phenomena. To enable efficient inference, we marginalize over the transition dynamics function and, instead, infer directly the joint smoothing distribution using specially tailored Particle Markov Chain Monte Carlo samplers. Once a sample from the smoothing distribution is computed, the state transition predictive distribution can be formulated analytically. Our approach preserves the full nonparametric expressivity of the model and can make use of sparse Gaussian processes to greatly reduce computational complexity.
Resumo:
In this paper we discuss key implementation challenges of a systems approach that combines System Dynamics, Scenario Planning and Qualitative Data Analysis methods in tackling a complex problem. We present the methods and the underlying framework. We then detail the main difficulties encountered in designing and planning the Scenario Planning workshop and how they were overcome, such as finding and involving the stakeholders and customising the process to fit within timing constraints. After presenting the results from this application, we argue that the consultants or system analysts need to engage with the stakeholders as process facilitators and not as system experts in order to gain commitment, trust and to improve information sharing. They also need be ready to adapt their tools and processes as well as their own thinking for more effective complex problem solving.
Resumo:
The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic-organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson-Mehl-Avrami-Kolmogorov model, with results fitting both ideal and nonideal cases.
Resumo:
Photolysis of microcystins by UV irradiation and the effects of different environmental factors on efficiency of UV degradation were studied. The results indicated that the rates of the photolytical degradation reactions of microcystin-LR and RR-follow pseudo-first-order kinetic process. The results also showed that the concentrations of two microcystin variants decreased significantly by UV-C Irradiation; the wavelength and intensitiy of UV irradiation are two very important factors affecting the rate of degradation; temperature and pH value could also affect the half life of degradation rates. When irradiated by weaker UV-Iight, isomerization could be detected in the course of photolytical degradation. The concentrations of two isomers transformed from microcystin-LR reached its maximum at the third minute and decreased with the time afterwards. To simulate photolysis of microcystins in the field water body, microcystins with low concentration were used. It was found that UV-C illumination was capable of decomposing over 95% of microcystins within 40 min. In the presence of humic substances the photodecomposition slowed down to a certain extent. These results are valuable in using UV irradiation for elimination microcystins from raw water.
Resumo:
We investigated the dynamics of spontaneous emission from a photonic crystal etched into a SiN slab. After fitting the decay curves of the emission to double exponential functions, we divided the dynamic process of the spontaneous emission into a fast process and a slow process. It was observed that the presence of the photonic crystal increased the proportion of the fast decay component, and consequently, the emission rate and time-integrated emission intensity were also enhanced. These enhancements were a result of the coupling of the guide modes to the leaky modes of the photonic crystal slab waveguide. (C) 2008 Optical Society of America.