936 resultados para polystyrene


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several copolymers of linear polystyrene were prepared for evaluation as soluble polymeric supports for organic synthesis. These polymers were utilized for the synthesis of ?2-isoxazoline compounds. The target compounds were synthesized via 1,3-dipolar cycloaddition reactions between polymer bound alkenes and nitrile oxides generated in situ from their corresponding aldoximes. The cleaved ?2-isoxazoline compounds were tested for biological activity against Mycobacterium fortuitum. To compare the success of these linear polystyrene copolymers, some of the ?2-isoxazoline compounds synthesized on soluble polymeric supports were also prepared via traditional crosslinked polymer supports. The polymer-bound ?2-isoxazolines were also tested for antimicrobial activity. In addition attempts were made to prepare polymers containing the ?2-isoxazolines but anchored by non-hydrolysable bonds. Although the copolymers of polystyrene gave good loading capacity in mmol/g, and being soluble in chlorinated solvents it was possible to monitor the reactions by 1H NMR spectroscopy, the cleavage of the polymer bound products proved to be quite troublesome. Product purification was not as straightforward as it was anticipated. Isolation of the cleaved target compounds proved to be time consuming and laborious when compared to the traditional organic synthesis and solid phase organic synthesis (SPOS). Polymer-bound ?2-isoxazolines close to the polymer backbone exhibited some biological activity against Staphylococcus aureus. Polymers with substitution at the para-position of the aryl substituent at position 3 of isoxazoline ring showed antimicrobial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the oxidative degradation of pure polystyrene, polybutadiene and butadiene-modified polystyrene (normally called high impact polystyrene or HIPS) have been studied using a variety of physical and chemical techniques. The changes in dynamic-mechanical properties occurring during the ultra-violet light accelerated weathering of these polymers were followed by a visco-elastometric technique (Rheovibron) in the solid phase over a wide temperature range. Selective cross-linking of the polybutadiene in high-impact polystyrene caused the depression of the low temperature damping peak (tan d) with a corresponding sharp peak in tan d at ambient temperature accompanied by an integral rise in complex modulus. During the same period of photoxidation, the hydroperoxide concentration and gel content increased rapidly, reaching a maximum before decomposing photolytically with the destruction of unsaturation and with the formation of stable oxidation products. Infra-red spectroscopy showed the formation of carbonyl and hydroxyl groups. a,ß-unsaturated carbonyl was also identified and was formed by decomposition of both allylic hydroperoxide and initial peroxidic gel by ß-scission of the graft between polybutadiene and polystyrene. With further photoxidation a more stable ether gel was formed involving the destruction of the conjugating double bond of a,ß-unsaturated carbonyl. Addition of saturated and unsaturated ketones which are potential sensitisers of photoxidation to high-impact polystyrene and polybutadiene failed to photo-initiate the oxygen absorption of the polymers. A prior thermal oxidative treatment on the other hand eliminated the auto- accelerating stage leading to linear kinetics as the concentration of thermally-produced hydroperoxide approached a maximum. Antioxidants which act by destroying hydroperoxide lengthened the induction period to rapid oxygen absorption, whilst a phenolic antioxidant behaved as a weak photo-activator initially and a retarder later. Prior photolysis of high-impact polystyrene photo-activated the unsaturated component and caused similar changes in dynamic-mechanical properties to those found during photoxidation although at a much lower rate. Polybutadiene behaves as a photo-pro-oxidant for the destruction of polystyrene in high-impact polystyrene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to produce a well-characterised electrospun polystyrene scaffold which could be used routinely for three-dimensional (3D) cell culture experimentation. A linear relationship (p<0.01p<0.01) between three principal process variables (applied voltage, working distance and polymer concentration) and fibre diameter was reliably established enabling a mathematical model to be developed to standardise the electrospinning process. Surface chemistry and bulk architecture were manipulated to increase wetting and handling characteristics, respectively. X-ray photoelectron spectroscopy (XPS) confirmed the presence of oxygen-containing groups after argon plasma treatment, resulting in a similar surface chemistry to treated tissue culture plastic. The bulk architecture of the scaffolds was characterised by scanning electron microscopy (SEM) to assess the alignment of both random and aligned electrospun fibres, which were calculated to be 0.15 and 0.66, respectively. This compared to 0.51 for collagen fibres associated with native tissue. Tensile strength and strain of approximately of 0.15 MPa and 2.5%, respectively, allowed the scaffolds to be routinely handled for tissue culture purposes. The efficiency of attachment of smooth muscle cells to electrospun scaffolds was assessed using a modified 3-[4,5-dimethyl(thiazol-2yl)-3,5-diphery] tetrazolium bromide assay and cell morphology was assessed by phalloidin-FITC staining of F-actin. Argon plasma treatment of electrospun polystyrene scaffold resulted in significantly increased cell attachment (p<0.05p<0.05). The alignment factors of the actin filaments were 0.19 and 0.74 for the random and aligned scaffold respectively, compared to 0.51 for the native tissue. The data suggests that electrospinning of polystyrene generates 3D scaffolds which complement polystyrene used in 2D cell culture systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of the direct observation, in real-space, of the phase separation of high molecular weight polystyrene and poly(methyl methacrylate) from ortho-xylene using our newly developed technique of high speed stroboscopic interference microscopy. Taking a fixed concentration (3 wt % in o-xylene) at a fixed composition (1:4 by weight) and by varying the rotational rate during the spin-coating process, we are able to observe the formation of a range of phase separated bicontinuous morphologies of differing length-scales. Importantly, we are able to show that the mechanism by which the final phase separated structure is formed is through domain coarsening when rich in solvent, before vitrification occurs and fixes the phase separated structure. The ability to directly observe morphological development offers a route toward controlling the length-scale of the final morphology through process control and in situ feedback, from a single stock solution. © 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic-inorganic nanocomposites combine unique properties of both the constituents in one material. Among this group of materials, clay based as well as ZnO, TiO2 nanocomposites have been found to have diverse applications. Optoelectronic devices require polymerinorganic systems to meet certain desired properties. Dielectric properties of conventional polymers like poly(ethylene-co-vinyl acetate) (EVA) and polystyrene (PS) may also be tailor tuned with the incorporation of inorganic fillers in very small amounts. Electrical conductivity and surface resistivity of polymer matrices are found to improve with inorganic nanofillers. II-VI semiconductors and their nano materials have attracted material scientists because of their unique optical properties of photoluminescence, UV photodetection and light induced conductivity. Cadmium selenide (CdSe), zinc selenide (ZnSe) and zinc oxide (ZnO) are some of the most promising members of the IIVI semiconductor family, used in light-emitting diodes, nanosensors, non-linear optical (NLO) absorption etc. EVA and PS materials were selected as the matrices in the present study because they are commercially used polymers and have not been the subject of research for opto-electronic properties with semiconductor nanomaterials

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin-like growth factor binding proteins (IGFBPs) are prime regulators of IGF-action in numerous cell types including the retinal pigment epithelium (RPE). The RPE performs several functions essential for vision, including growth factor secretion and waste removal via a phagocytic process mediated in part by vitronectin (Vn). In the course of studying the effects of IGFBPs on IGF-mediated VEGF secretion and Vn-mediated phagocytosis in the RPE cell line ARPE-19, we have discovered that these cells avidly ingest synthetic microspheres (2.0 μm diameter) coated with IGFBPs. Given the novelty of this finding and the established role for endocytosis in mediating IGFBP actions in other cell types, we have explored the potential role of candidate cell surface receptors. Moreover, we have examined the role of key IGFBP structural motifs, by comparing responses to three members of the IGFBP family (IGFBP-3, IGFBP-4 and IGFBP-5) which display overlapping variations in primary structure and glycosylation status. Coating of microspheres (FluoSpheres®, sulfate modified polystyrene filled with a fluorophore) was conducted at 37 °C for 1 h using 20 μg/mL of test protein, followed by extensive washing. Binding of proteins was confirmed using a microBCA assay. The negative control consisted of microspheres treated with 0.1% bovine serum albumin (BSA), and all test samples were post-treated with BSA in an effort to coat any remaining free protein binding sites, which might otherwise encourage non-specific interactions with the cell surface. Serum-starved cultures of ARPE-19 cells were incubated with microspheres for 24 h, using a ratio of approximately 100 microspheres per cell. Uptake of microspheres was quantified using a fluorometer and was confirmed visually by confocal fluorescence microscopy. The ARPE-19 cells displayed little affinity for BSA-treated microspheres, but avidly ingested large quantities of those pre-treated with Vn (ANOVA; p < 0.001). Strong responses were also observed towards recombinant formulations of non-glycosylated IGFBP-3, glycosylated IGFBP-3 and glycosylated IGFBP-5 (all p < 0.001), while glycosylated IGFBP-4 induced a relatively minor response (p < 0.05). The response to IGFBP-3 was unaffected in the presence of excess soluble IGFBP-3, IGF-I or Vn. Likewise, soluble IGFBP-3 did not induce uptake of BSA-treated microspheres. Antibodies to either the transferrin receptor or type 1 IGF-receptor displayed slight inhibitory effects on responses to IGFBPs and Vn. Heparin abolished responses to Vn, IGFBP-5 and non-glycosylated IGFBP-3, but only partially inhibited the response to glycosylated IGFBP-3. Our results demonstrate for the first time IGFBP-mediated endocytosis in ARPE-19 cells and suggest roles for the IGFBP-heparin-binding domain and glycosylation status. These findings have important implications for understanding the mechanisms of IGFBP actions on the RPE, and in particular suggest a role for IGFBP-endocytosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experts in injection molding often refer to previous solutions to find a mold design similar to the current mold and use previous successful molding process parameters with intuitive adjustment and modification as a start for the new molding application. This approach saves a substantial amount of time and cost in experimental based corrective actions which are required in order to reach optimum molding conditions. A Case-Based Reasoning (CBR) System can perform the same task by retrieving a similar case which is applied to the new case from the case library and uses the modification rules to adapt a solution to the new case. Therefore, a CBR System can simulate human e~pertise in injection molding process design. This research is aimed at developing an interactive Hybrid Expert System to reduce expert dependency needed on the production floor. The Hybrid Expert System (HES) is comprised of CBR, flow analysis, post-processor and trouble shooting systems. The HES can provide the first set of operating parameters in order to achieve moldability condition and producing moldings free of stress cracks and warpage. In this work C++ programming language is used to implement the expert system. The Case-Based Reasoning sub-system is constructed to derive the optimum magnitude of process parameters in the cavity. Toward this end the Flow Analysis sub-system is employed to calculate the pressure drop and temperature difference in the feed system to determine the required magnitude of parameters at the nozzle. The Post-Processor is implemented to convert the molding parameters to machine setting parameters. The parameters designed by HES are implemented using the injection molding machine. In the presence of any molding defect, a trouble shooting subsystem can determine which combination of process parameters must be changed iii during the process to deal with possible variations. Constraints in relation to the application of this HES are as follows. - flow length (L) constraint: 40 mm < L < I 00 mm, - flow thickness (Th) constraint: -flow type: - material types: I mm < Th < 4 mm, unidirectional flow, High Impact Polystyrene (HIPS) and Acrylic. In order to test the HES, experiments were conducted and satisfactory results were obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exchange reactions between the isoindoline profluorescent nitroxide 1,1,3,3-tetramethyldibenzo[e,g]isoindolin-2-yloxyl (TMDBIO) and a TEMPO capped polystyrene were carried out. High conversions to the desired products were achieved using only stoichiometric ratios of nitroxide relative to polymer. The scope of this study was expanded by exploiting a di-nitroxide 9,10-bis(5-[1,1,3,3-tetramethylisoindolin-2-yloxy])anthracene (BTMIOA) as a connector between two polymer chains forming PS–nitroxide–PS systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous polylactide constructs were prepared by stereolithography, for the first time without the use of reactive diluents. Star-shaped poly(D,L-lactide) oligomers with 2, 3 and 6 arms were synthesised, end-functionalised with methacryloyl chloride and photocrosslinked in the presence of ethyl lactate as a non-reactive diluent. The molecular weights of the arms of the macromers were 0.2, 0.6, 1.1 and 5 kg/mol, allowing variation of the crosslink density of the resulting networks. Networks prepared from macromers of which the molecular weight per arm was 0.6 kg/mol or higher had good mechanical properties, similar to linear high molecular weight poly(D,L-lactide). A resin based on a 2-armed poly(D,L-lactide) macromer with a molecular weight of 0.6 kg/mol per arm (75 wt%), ethyl lactate (19 wt%), photo-initiator (6 wt%), inhibitor and dye was prepared. Using this resin, films and computer-designed porous constructs were accurately fabricated by stereolithography. Pre-osteoblasts showed good adherence to these photocrosslinked networks. The proliferation rate on these materials was comparable to that on high molecular weight poly(D,L-lactide) and tissue culture polystyrene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental set-up was used to visually observe the characteristics of bubbles as they moved up a column holding xanthan gum crystal suspensions. The bubble rise characteristics in xanthan gum solutions with crystal suspension are presented in this paper. The suspensions were made by using different concentrations of xanthan gum solutions with 0.23 mm mean diameter polystyrene crystal particles. The influence of the dimensionless quantities; namely the Reynolds number, Re, the Weber number, We, and the drag co-efficient, cd, are identified for the determination of the bubble rise velocity. The effect of these dimensionless groups together with the Eötvös number, Eo, the Froude number, Fr, and the bubble deformation parameter, D, on the bubble rise velocity and bubble trajectory are analysed. The experimental results show that the average bubble velocity increases with the increase in bubble volume for xanthan gum crystal suspensions. At high We, Eo and Re, bubbles are spherical-capped and their velocities are found to be very high. At low We and Eo, the surface tension force is significant compared to the inertia force. The viscous forces were shown to have no substantial effect on the bubble rise velocity for 45 < Re < 299. The results show that the drag co-efficient decreases with the increase in bubble velocity and Re. The trajectory analysis showed that small bubbles followed a zigzag motion while larger bubbles followed a spiral motion. The smaller bubbles experienced less horizontal motion in crystal suspended xanthan gum solutions while larger bubbles exhibited a greater degree of spiral motion than those seen in the previous studies on the bubble rise in xanthan gum solutions without crystal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A single air bubble rising in xanthan gum crystal suspension has been studied experimentally. The suspension was made by different concentrations of xanthan gum solutions with 0.23 mm polystyrene crystal particles. Drag co-efficient data and a new correlation of drag coefficient is presented for spherical and nonspherical bubbles in non-Newtonian crystal suspension. The correlation is developed in terms of the Reynolds number, Re and the bubble shape factor, � (the ratio between the surface equivalent sphere diameter to the volume equivalent sphere diameter). The experimental drag coefficient was found to be consistent with this new predicted correlation and published data over the ranges, 0.1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review examines the potential of anions, in particular sulfate, to template the formation of complex molecular architectures. Until recently, sulfate has been largely overlooked in this area and the examples described herein demonstrate this anion’s versatility in templating the formation of a diverse range of molecular systems including macrocycles, helixes, molecular capsules, interpenetrated and interlocked assemblies such as catenanes. In addition sulfate has been shown to template the formation of interpenetrated structures on a range of solid surfaces including gold, polystyrene beads and silicate nanoparticles, highlighting the potential of this anion in the fabrication of functional sensory devices exhibiting highly selective binding behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene, one of the allotropes (diamond, carbon nanotube, and fullerene) of carbon, is a monolayer of honeycomb lattice of carbon atoms discovered in 2004. The Nobel Prize in Physics 2010 was awarded to Andre Geim and Konstantin Novoselov for their ground breaking experiments on the twodimensional graphene [1]. Since its discovery, the research communities have shown a lot of interest in this novel material owing to its unique properties. As shown in Figure 1, the number of publications on graphene has dramatically increased in recent years. It has been confirmed that graphene possesses very peculiar electrical properties such as anomalous quantum hall effect, and high electron mobility at room temperature (250000 cm2/Vs). Graphene is also one of the stiffest (modulus ~1 TPa) and strongest (strength ~100 GPa) materials. In addition, it has exceptional thermal conductivity (5000 Wm-1K-1). Based on these exceptional properties, graphene has found its applications in various fields such as field effect devices, sensors, electrodes, solar cells, energy storage devices and nanocomposites. Only adding 1 volume per cent graphene into polymer (e.g. polystyrene), the nanocomposite has a conductivity of ~0.1 Sm-1 [2], sufficient for many electrical applications. Significant improvement in strength, fracture toughness and fatigue strength has also been achieved in these nanocomposites [3-5]. Therefore, graphene-polymer nanocomposites have demonstrated a great potential to serve as next generation functional or structural materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sandwich panels comprising steel facings and a polystyrene foam core are increasingly used as roof and wall claddings in buildings in Australia. When they are subjected to loads causing bending and/or axial compression, the steel plate elements of their profiled facing are susceptible to local buckling. However, when compared to panels with no foam core, they demonstrate significantly improved local buckling behaviour because they are supported by foam. In order to quantify such improvements and to validate the use of available design buckling stress formulae, an investigation using finite element analyses and laboratory experiments was carried out on steel plates that are commonly used in Australia of varying yield stress and thickness supported by a polystyrene foam core. This paper presents the details of this investigation, the buckling results and their comparison with available design buckling formulae.