939 resultados para poly(phenylene vinylene) and derivatives
Resumo:
SnS/SnO heterojunction structured nanocrystals with zigzag rod-like connected morphology were prepared by using a simple two-step method. Bulk heterojunction solar cells were fabricated using the SnS/SnO nanocrystals blended with poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV) as the active layer. Compared with solar cells using SnS nanoparticles hybridized with MDMO-PPV as the active layer, the SnS/SnO devices showed better performance, with a power conversion efficiency higher by about one order in magnitude.
Resumo:
Grignard metathesis (GRIM) polymerization for all-conjugated diblock copolymers comprising poly (2,5-dihexyloxy-1,4-phenylene) (PPP) and poly(3-hexylthiophene) (P3HT) blocks were systematically studied with LiCl as additive and 1,2-bis (diphenylphosphino) ethane nickel dichloride (Ni(dppe)Cl-2) or 1,3-bis(diphenylphosphino) propane nickel dichloride (Ni(dppp)Cl-2) as catalyst. It was found that the addition order of the monomers was crucial for the success of copolymerization. With the monomer addition in the order of phenyl and then thienyl Grignard reagents, all-conjugated PPP-b-P3HT diblock copolymers with different block ratios were successfully synthesized. In contrast, the inverted addition order only afforded a mixture containing both block copolymers and deactivated or end-capped homopolymers.
Resumo:
We determine the mobility of positive and negative charge carriers in a soluble green-emitting alternating block copolymer with, a methoxy bi-subsbituted conjugated segment. The negative charge carrier mobility of 6 x 10(-11) cm(2)/V.s is directly determined using space-charge-limited current analytical expressions. Positive charge carrier transport is also space-charge-limited, with a mobility of I x 10(-8) cm(2)/V.s. The electron trap distribution is exponential, with a characteristic energy of similar to 0.12 eV. A hole trap with energy similar to 0.4 eV was observed. This copolymer is used as emissive material in organic light-emitting diodes that present brightness of similar to 900 cd/m(2) at 12.5 V.
Resumo:
A series of light-emitting poly(p-phenylene vinylene)s with triphenylamine units as hole-transporting moieties in the main chain were synthesized via Wittig condensation in good yields. The newly formed vinylene double bonds possessed a trans configuration, which was confirmed by Fourier transform infrared and NMR spectroscopy. The high glass-transition temperature (83-155 degreesC) and high decomposition temperature (> 300 degreesC) suggested that the resulting copolymers possessed high thermal stability. These copolymers, especially TAAPV1, possessed a high weight-average molecular weight (47,144) and a low polydispersity index (1.55). All the copolymers could be dissolved in common organic solvents, such as tetrahydrofuran (THF), CHCl3, CH2Cl2, and toluene, and exhibited intense photoluminesence in THF (the emission maxima were located from 478 to 535 nm) and in film (from 478 to 578 nm). The low onsets of the oxidation potential (0.6-0.75 V) suggested that the alternating copolymers possessed a good hole-transporting property due to the incorporation of triphenylamine moieties. (C) 2001 John Wiley & Sons, Inc.
Resumo:
In this work we used the conversion process of a precursor polymer into polyparaphenylenevinylene (PPV) at low temperatures in order to control the effective conjugation degree of spin-casted PPV films. The absorption and emission spectra of the films were studied by following a partial substitution of chloride counterions from poly(xylylidene tetrahydrothiophenium chloride) (PTHT), used as a precursor, by sodium acid dodecyl benzenesulfonate (DBS), added as a surfactant salt. Upon controlling the DBS amount and conversion temperature (T-c) of PTHT/DBS to PPV films, the band gap of PPV changed from 409 to 506 nm, and 505 to 532 nm, values obtained from absorbance and emission measurements, respectively. Based on these experimental data, we proposed a physical model which represents the chemical structure of PPV as a distribution of conjugated chain segments (like oligomers) alternated by non-conjugated segments (structural defects and/or from the precursor polymer). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This article describes the microstructure and dynamics in the solid state of polyfluorene-based polymers, poly(9,)-dioctylfluorenyl-2,7-diyl) (PFO), a semicrystalline polymer, and poly [(9,9-dioctyl- 2,7-divinylene-fluorenylene)-alt-co-{2-methoxy-5-(2-ethyl-hexyloxy)- 1,4-phenylene vinylene}, a copolymer with mesomorphic phase properties. These Structures were determined by wide-angle X-ray scattering (WAXS) measurements, Assuming a packing model for the copolymer structure, where the planes of the phenyl rings are stacked and separated by an average distance of similar to 4.5 angstrom and laterally spaced by about similar to 16 angstrom, we followed the evolution of these distances as a function of temperature using WAXS and associated the changes observed to the polymer relaxation processes identified by dynamical mechanical thermal analysis. Specific molecular motions were studied by solid-state nuclear magnetic resonance. The onset of the side-chain motion at about 213 K (beta-relaxation) produced a small increase in the lateral spacing and in the stacking distance of the phenyl rings in them aggregated Structures, Besides, at about 383 K (alpha-relaxation) there occurs a significant increase in the amplitude of the torsion motion in the backbone, producing a greater increase in the stacking distance of the phenyl rings. Similar results were observed in the semicrystalline phase of PFO, but in this case the presence of the crystalline structure affects considerably the overall dynamics, which tends to be more hindered. Put together, Our data explain many features of the temperature dependence of the photoluminescence of these two polymers.
Resumo:
In this work we studied the properties of absorption and emission line shape of layer-by-layer (LBL) poly(p-phenylene vinylene) (PPV) on indium-tin oxide (ITO) electrode. To minimize the PPV thermal conversion effects during the polymer processing, we used a less aggressive leaving group in the precursor polymer; minimizing electrode degradation. LBL ITO/PPV films showed the same absorption and emission line shape compared with LBL PPV films deposited on non-metallic substrates (glass). With this analysis we indirectly observe the decrease in the ITO degradation. Atomic force microscopy (AFM) technique was used to analyze quantitatively the microscopic morphology of the film surface. Results indicated that the substrate topology is not affected, to a large extent, by the use of dodecylbenzensulfonate (DBS) ion. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The excited-state dynamics of two polyfluorene copolymers, one fully conjugated containing phenylene vinylene units alternated with 9,9`-dihexylfluorenyl groups and the other segmented by -(CH2)(8)- spacer, were studied in dilute solution of different solvents using a picosecond single-photon timing technique. The excited-state dynamics of the segmented copolymer follows the Forster resonant energy-transfer model which describes intrachain energy-transfer kinetics among random oriented chromophores. Energy transfer is confirmed by analysis of fluorescence anisotropy relaxation with the measurement of a short decay component of about 60 ps. The fluorescence decay surface of the fully conjugated copolymer is biexponential with decay times of about 470 and 900 ps, ascribed to deactivation of chain moieties containing trans and cis isomers already in a photostationary condition. Thus, energy transfer is very fast due to the conjugated nature and rigid-rod-like structure of this copolymer chain.
Resumo:
Poly(o-methylaniline) (poly-o-toluidine, PTOL) was synthesized by chemical oxidation of o-toluidine with ammonium peroxydisulfate in an aqueous 1.0 mol L -1 HCl solution. The progress of polymerization was followed by measuring the open-circuit potential (OCP) of a Pt electrode immersed in the reaction medium with the polymerization time. The chemical synthesis of PTOL was carried out at different monomer:oxidant (M:O) molar ratios (4:1, 2:1, 1.5:1, 1:1, and 0.66:1), and the products obtained were characterized by infrared spectroscopy, gel permeation chromatography, and X-ray diffraction. The molecular weight and percentage of crystallinity of PTOL are higher for samples synthesized in an excess of the monomer, i.e. at higher M:O ratios. However, the yield of PTOL prepared at higher M:O ratios is considerably low, in particular at a 4:1 M:O ratio, which is the M:O ratio most commonly used in the literature to synthesize polyaniline and its derivatives.
Resumo:
The influence of layer-by-layer films of polyaniline and Ni-tetrasulfonated phthalocyanine (PANI/Ni-TS-Pc) on the electrical performance of polymeric light-emitting diodes (PLED) made from (poly[2-methoxy-5-(2`-ethyl-hexyloxy)-1,4-phenylene vinylene]) (MEH-PPV) is investigated by using current versus voltage measurements and impedance spectroscopy. The PLED is composed by a thin layer of MEH-PPV sandwiched between indium tin oxide (ITO) and aluminum electrodes, resulting in the device structure ITO/(PANI/Ni-TS-Pc)(n)/MEH-PPV/Al, where n stands for the number of PANI/Ni-TS-Pc bilayers. The deposition of PANI/Ni-TS-Pc leads to a decrease in the driving voltage of the PLEDs, which reaches a minimum when n = 5 bilayers. In addition, impedance spectroscopy data reveal that the PLED impedance decreases as more PANI/Ni-TS-Pc bilayers are deposited. The PLED structure is further described by an equivalent circuit composed by two R-C combinations, one for the bulk and other for the interface components, in series with a resistance originated in the ITO contact. From the impedance curves, the values for each circuit element is determined and it is found that both, bulk and interface resistances are decreased upon PANI/Ni-TS-Pc deposition. The results indicate that PANI/NiTS-Pc films reduce the contact resistance at ITO/MEH-PPV interface, and for that reason improve the hole-injection within the PLED structure. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Charge transport and shelf-degradation of MEH-PPV thin-films were investigated through stationary (e.g. current versus voltage - JxV) and transient (e.g. Time-of-Flight - ToF, Dark-Injection Space-Charge-Limited Current - DI-SCLC, Charge Extraction by Linearly Increasing Voltage - CELN) current techniques. Charge carrier mobility in nanometric films was best characterized through JxV and DI-SCLC. It approaches 10(-6) cm(2)Ns under a SCLC regime with deep traps for light-emitting diode applications. ToF measurements performed on micrometric layers (i.e. - 3 mu m) confirmed studies in 100 nm-thick films as deposited in OLEDs. All results were comparable to a similar poly(para-phenylene vinylene) derivative, MDMO-PPV. Electrical properties extracted from thin-film transistors demonstrated mobility dependence on carrier concentration in the channel (similar to 10(-7)-10(-4) cm(2)/Vs). At low accumulated charge levels and reduced free carrier concentration, a perfect agreement to the previously cited techniques was observed. Degradation was verified through mobility reduction and changes in trap distribution of states. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Charge transport in conjugated polymers as well as in bulk-heterojunction (BHJ) solar cells made of blends between conjugated polymers, as electron-donors (D), and fullerenes, as electron-acceptors (A), has been investigated. It is shown how charge carrier mobility of a series of anthracene-containing poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene)s (AnE-PVs) is highly dependent on the lateral chain of the polymers, on a moderate variation of the macromolecular parameters (molecular weight and polydispersity), and on the processing conditions of the films. For the first time, the good ambipolar transport properties of this relevant class of conjugated polymers have been demonstrated, consistent with the high delocalization of both the frontier molecular orbitals. Charge transport is one of the key parameters in the operation of BHJ solar cells and depends both on charge carrier mobility in pristine materials and on the nanoscale morphology of the D/A blend, as proved by the results here reported. A straight correlation between hole mobility in pristine AnE-PVs and the fill factor of the related solar cells has been found. The great impact of charge transport for the performance of BHJ solar cells is clearly demonstrated by the results obtained on BHJ solar cells made of neat-C70, instead of the common soluble fullerene derivatives (PCBM or PC70BM). The investigation of neat-C70 solar cells was motivated by the extremely low cost of non-functionalized fullerenes, compared with that of their soluble derivatives (about one-tenth). For these cells, an improper morphology of the blend leads to a deterioration of charge carrier mobility, which, in turn, increases charge carrier recombination. Thanks to the appropriate choice of the donor component, solar cells made of neat-C70 exhibiting an efficiency of 4.22% have been realized, with an efficiency loss of just 12% with respect to the counterpart made with costly PC70BM.
Resumo:
In this paper, we report photovoltaic devices fabricated from lead sulfide nanocrystals and the conducting polymer poly(2-methoxy-5-(2'-ethyl-hexyloxy)-p-phenylene vinylene). This composite material was produced via a new single-pot synthesis which solves many of the issues associated with existing methods. Our devices have white light power conversion efficiencies under AM 1.5 illumination of 0.7% and single wavelength conversion efficiencies of 1.1%. Additionally, they exhibit remarkably good ideality factors (n = 1.15). Our measurements show that these composites have significant potential as soft optoelectronic materials.
Resumo:
Steady-state and time-resolved photoluminescence spectroscopy are used to examine the photoluminescent properties of nanocrystal-polymer composites consisting of colloidal PbS nanocrystals blended with poly(2-methoxy-5(2-ethylhexyloxy)-p-phenylene vinylene). Quenching of the emission from the conjugated polymer due to the PbS nanocrystals is observed along with band edge emission from the ligand capped PbS nanocrystals. A decrease in the photoluminescence lifetime of MEH-PPV is also observed in the thin film nanocrystal-polymer composite materials. Photoluminescence excitation spectroscopy of the PbS nanocrystal emission from the composite shows features attributed to MEH-PPV providing evidence of a Forster transfer process.
Resumo:
La compréhension des interrelations entre la microstructure et les processus électroniques dans les polymères semi-conducteurs est d’une importance primordiale pour leur utilisation dans des hétérostructures volumiques. Dans cette thèse de doctorat, deux systémes diffèrents sont étudiés ; chacun de ces systèmes représente une approche diffèrente pour optimiser les matériaux en termes de leur microstructure et de leur capacité à se mettre en ordre au niveau moléculaire. Dans le premier système, j’ai effectué une analyse complète des principes de fonctionnement d’une cellule photovoltaïque hybride à base des nanocristaux d’oxyde de zinc (ZnO) et du poly (3-hexylthiophène) (P3HT) par absorption photoinduite en régime quasi-stationnaire (PIA) et la spectroscopie PIA en pompage modulé dépendant de la fréquence. L’interface entre le donneur (le polymère P3HT) et l’accepteur (les nanoparticules de ZnO), où la génération de charges se produit, joue un rôle important dans la performance des cellules photovoltaïques hybrides. Pour améliorer le mécanisme de génération de charges du P3H: ZnO, il est indispensable de modifier l’interface entre ses constituants. Nous avons démontré que la modification d’interface moléculaire avec cis-bis (4, 40 - dicarboxy-2, 20bipyridine) ruthénium (II) (N3-dye) et a-Sexithiophen-2 yl-phosphonique (6TP) a améliorée le photocourant et la performance dans les cellules P3HT: ZnO. Le 6TP et le N3 s’attachent à l’interface du ZnO, en augmentant ainsi l’aire effective de la surface donneur :accepteur, ce qui contribue à une séparation de charge accrue. De plus, le 6TP et le N3 réduisent la densité de pièges dans le ZnO, ce qui réduit le taux de recombinaison des paires de charges. Dans la deuxième partie, jai introduit une matrice hôte polymérique de polystyréne à masse molaire ulra-élevée, qui se comporte comme un solide pour piéger et protéger une solution de poly [2-méthoxy, 5- (2´-éthyl-hexoxy) -1,4-phénylènevinylène- PPV] (MEHPPV) pour utilisation dans des dispositifs optoèlectroniques quantiques. Des travaux antérieurs ont montré que MEH-PPV en solution subit une transition de conformation, d’une conformation enroulé à haute température (phase bleue) à une conformation de chaîne étendue à basse température (phase rouge). La conformation de la chaîne étendue de la solution MEH-PPV favorise les caractéristiques nécessaires à l’amélioration des dispositifs optoélectroniques quantiques, mais la solution ne peut pas être incorporées dans le dispositif. J’ai démontré que la caractéristique de la phase rouge du MEH-PPV en solution se maintient dans une matrice hôte polymérique de polystyrène transformé de masse molaire très élevée, qui se comporte comme un solide (gel de MEH-PPV/UHMW PS), par le biais de la spectroscopie de photoluminescence (PL) dépendant de la température (de 290K à 80 K). La phase rouge du gel MEH-PPV/UHMW PS se manifeste par des largeurs de raie étroites et une intensité augmentée de la transition 0-0 de la progression vibronique dans le spectre de PL ainsi qu’un petit décalage de Stokes entre la PL et le spectre d’absorption à basse température. Ces approches démontrent que la manipulation de la microstructure et des propriétés électroniques des polymères semi-conducteurs ont un impact direct sur la performance de dispositifs pour leurs développements technologiques continus.