415 resultados para plasmonic metamaterials
Resumo:
Metamaterials are artificial materials that exhibit properties, such as negative index of refraction, that are not possible through natural materials. Due to many potential applications of negative index metamaterials, significant progress in the field has been observed in the last decade. However, achieving negative index at visible frequencies is a challenging task. Generally, fishnet metamaterials are considered as a possible route to achieve negative index in the visible spectrum. However, so far no metamaterial has been demonstrated to exhibit simultaneously negative permittivity and permeability (double-negative) beyond the red region of the visible spectrum. This study is mainly focused on achieving higher operating frequency for low-loss, double-negative metamaterials. Two double-negative metamaterials have been proposed to operate at highest reported frequencies. The first proposed metamaterial is based on the interaction of surface plasmon polaritons of a thin metal film with localized surface plasmons of a metallic array placed close to the thin film. It is demonstrated that the metamaterial can easily be scaled to operate at any frequency in the visible spectrum as well as possibly to the ultraviolet spectrum. Furthermore, the underlying physical phenomena and possible future extensions of the metamaterial are also investigated. The second proposed metamaterial is a modification to the so-called fishnet metamaterial. It has been demonstrated that this ‘modified fishnet’ exhibits two double-negative bands in the visible spectrum with highest operating frequency in the green region with considerably high figure of merit. In contrast to most of the fishnet metamaterials proposed in the past, behavior of this modified fishnet is independent of polarization of the incident field. In addition to the two negative index metamaterials proposed in this study, the use of metamaterial as a spacer, named as metaspacer, is also investigated. In contrast to naturally available dielectric spacers used in microfabrication, metaspacers can be realized with any (positive or negative) permittivity and permeability. As an example, the use of a negative index metaspacer in place of the dielectric layer in a fishnet metamaterial is investigated. It is shown that fishnet based on negative index metaspacer gives many improved optical properties over the conventional fishnet such as wider negative index band, higher figure of merit, higher optical transmission and stronger magnetic response. In addition to the improved properties, following interesting features were observed in the metaspacer based fishnet metamaterial. At the resonance frequency, the shape of the permeability curve was ‘inverted’ as compared to that for conventional fishnet metamaterial. Furthermore, dependence of the resonance frequency on the fishnet geometry was also reversed. Moreover, simultaneously negative group and phase velocities were observed in the low-loss region of the metaspacer based fishnet metamaterial. Due to interesting features observed using metaspacer, this study will open a new horizon for the metamaterial research.
Resumo:
We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.
Resumo:
Concepts of lateral ordering of epitaxial semiconductor quantum dots (QDs) are for the first time transferred to hybrid nanostructures for active plasmonics. We review our recent research on the self-alignment of epitaxial nanocrystals of In and Ag on ordered one-dimensional In(Ga)As QD arrays and isolated QDs by molecular beam epitaxy. By changing the growth conditions the size and density of the metal nanocrystals are easily controlled and the surface plasmon resonance wavelength is tuned over a wide range in order to match the emission wavelength of the QDs. Photoluminescence measurements reveal large enhancement of the emitted light intensity due to plasmon enhanced emission and absorption down to the single QD level.
Resumo:
This review of Electromagnetic Band Gap (EGB) metamaterials and steering integrated antennas was carried out in IMST GmbH under a short collaboration stay. This activity is in line with Coordinating the Antenna Research in Europe (CARE). The aim is to identify the newest trends, and suggest novel solutions and design methodologies for various applications.
Resumo:
Final lenses in laser fusion plants. Challenges for the protection of the final lenses. Plasmonic nanoparticles. Radiation resistance
Resumo:
A photonic crystal fiber selectively filled with silver nanoparticles dispersed in polydimethylsiloxane has been numerically studied via finite elements analysis. These nanoparticles possess a localized surface plasmon resonance in the visible region which depends on the refractive index of the surrounding medium. The refractive index of polydimethylsiloxane can be thermally tuned leading to the design of polarization tunable filters. Filters found with this setup show anisotropic attenuation of the x-polarization fundamental mode around ?x = 1200dB/cm remarkably higher than the y-polarization mode. Moreover, high fiber birefringence and birefringence reversal is observed in the spectral region of the plasmon.
Resumo:
The main aim of this thesis is the controlled and reproducible synthesis of functional materials at the nanoscale. In the first chapter, a tuning of morphology and magnetic properties of magnetite nanoparticles is presented. It was achieved by an innovative approach, which involves the use of an organic macrocycle (calixarene) to induce the oriented aggregation of NPs during the synthesis. This method is potentially applicable to the preparation of other metal oxide NPs by thermal decomposition of the respective precursors. Products obtained, in particular the multi-core nanoparticles, show remarkable magnetic and colloidal properties, making them very interesting for biomedical applications. The synthesis and functionalisation of plasmonic Au and Ag nanoparticles is presented in the second chapter. Here, a supramolecular approach was exploited to achieve a controlled and potentially reversible aggregation between Au and Ag NPs. This aggregation phenomena was followed by UV - visible spectroscopy and dynamic light scattering. In the final chapters, the conjugation of plasmonic and magnetic functionalities was tackled through the preparation of dimeric nanostructures. Au - Fe oxide heterodimeric nanoparticles were prepared and their magnetic properties thoroughly characterised. The results demonstrate the formation of FeO (wustite), together with magnetite, during the thermal decomposition of the iron precursor. By an oxidation process that preserves Au in the dimeric structures, wustite completely disappeared, with the formation of either magnetite and / or maghemite, much better from the magnetic point of view. The plasmon resonance of Au results damped by the presence of the iron oxide, a material with high refractive index, but it is still present if the Au domain of the nanoparticles is exposed towards the bulk. Finally, remarkable hyperthermia, also in vitro, was found for these structures.
Resumo:
We have analyzed surface-wave propagation that takes place at the boundary between an isotropic medium and a semi-infinite metal-dielectric periodic medium cut normally to the layers. In the range of frequencies where the periodic medium shows hyperbolic space dispersion, hybridization of surface waves (dyakonons) occurs. At low to moderate frequencies, dyakonons enable tighter confinement near the interface in comparison with pure SPPs. On the other hand, a distinct regime governs dispersion of dyakonons at higher frequencies.
Resumo:
We analyzed surface-wave propagation that takes place at the boundary between a semi-infinite dielectric and a multilayered metamaterial, the latter with indefinite permittivity and cut normally to the layers. Known hyperbolization of the dispersion curve is discussed within distinct spectral regimes, including the role of the surrounding material. Hybridization of surface waves enable tighter confinement near the interface in comparison with pure-TM surface-plasmon polaritons. We demonstrate that the effective-medium approach deviates severely in practical implementations. By using the finite-element method, we predict the existence of long-range oblique surface waves.
Resumo:
We show that subwavelength diffracted wave fields may be managed inside multilayered plasmonic devices to achieve ultra-resolving lensing. For that purpose we first transform both homogeneous waves and a broad band of evanescent waves into propagating Bloch modes by means of a metal/dielectric (MD) superlattice. Beam spreading is subsequently compensated by means of negative refraction in a plasmon-induced anisotropic effective-medium that is cemented behind. A precise design of the superlens doublet may lead to nearly aberration-free images with subwavelength resolution in spite of using optical paths longer than a wavelength.
Resumo:
We analyze the existence of localized waves in the vicinities of the interface between two dielectrics, provided one of them is uniaxial and lossy. We found two families of surface waves, one of them approaching the well-known Dyakonov surface waves (DSWs). In addition, a new family of wave fields exists which are tightly bound to the interface. Although its appearance is clearly associated with the dissipative character of the anisotropic material, the characteristic propagation length of such surface waves might surpass the working wavelength by nearly two orders of magnitude.
Resumo:
We demonstrate that an interplay between diffraction and defocusing nonlinearity can support stable self-similar plasmonic waves with a parabolic profile. Simplicity of a parabolic shape combined with the corresponding parabolic spatial phase distribution creates opportunities for controllable manipulation of plasmons through a combined action of diffraction and nonlinearity. © 2013 Optical Society of America.
Resumo:
We study theoretically the effect of a new type of blocklike positional disorder on the effective electromagnetic properties of one-dimensional chains of resonant, high-permittivity dielectric particles, where particles are arranged into perfectly well-ordered blocks whose relative position is a random variable. This creates a finite order correlation length that mimics the situation encountered in metamaterials fabricated through self-assembled techniques, whose structures often display short-range order between near neighbors but long-range disorder, due to stacking defects. Using a spectral theory approach combined with a principal component statistical analysis, we study, in the long-wavelength regime, the evolution of the electromagnetic response when the composite filling fraction and the block size are changed. Modifications in key features of the resonant response (amplitude, width, etc.) are investigated, showing a regime transition for a filling fraction around 50%.
Resumo:
© 2016, Springer-Verlag Berlin Heidelberg.Nanoparticles are being explored in many different applications due to the unique properties offered by quantum effects. To broaden the scope of these applications, the deposition of nanoparticles onto substrates in a simple and controlled way is highly desired. In this study, we use resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) for the deposition of metallic, silver nanoparticles for plasmonic applications. We find that RIR-MAPLE, a simple and versatile approach, is able to deposit silver nanoparticles as large as 80 nm onto different substrates with good adhesion, regardless of substrate properties. In addition, the nanoparticle surface coverage of the substrates, which result from the random distribution of nanoparticles across the substrate per laser pulse, can be simply and precisely controlled by RIR-MAPLE. Polymer films of poly(3-hexylthiophene-2,5-diyl) (P3HT) are also deposited by RIR-MAPLE on top of the deposited silver nanoparticles in order to demonstrate enhanced absorption due to the localized surface plasmon resonance effect. The reported features of RIR-MAPLE nanoparticle deposition indicate that this tool can enable efficient processing of nanoparticle thin films for applications that require specific substrates or configurations that are not easily achieved using solution-based approaches.
Resumo:
Recent advances in nanotechnology have led to the application of nanoparticles in a wide variety of fields. In the field of nanomedicine, there is great emphasis on combining diagnostic and therapeutic modalities into a single nanoparticle construct (theranostics). In particular, anisotropic nanoparticles have shown great potential for surface-enhanced Raman scattering (SERS) detection due to their unique optical properties. Gold nanostars are a type of anisotropic nanoparticle with one of the highest SERS enhancement factors in a non-aggregated state. By utilizing the distinct characteristics of gold nanostars, new plasmonic materials for diagnostics, therapy, and sensing can be synthesized. The work described herein is divided into two main themes. The first half presents a novel, theranostic nanoplatform that can be used for both SERS detection and photodynamic therapy (PDT). The second half involves the rational design of silver-coated gold nanostars for increasing SERS signal intensity and improving reproducibility and quantification in SERS measurements.
The theranostic nanoplatforms consist of Raman-labeled gold nanostars coated with a silica shell. Photosensitizer molecules for PDT can be loaded into the silica matrix, while retaining the SERS signal of the gold nanostar core. SERS detection and PDT are performed at different wavelengths, so there is no interference between the diagnostic and therapeutic modalities. Singlet oxygen generation (a measure of PDT effectiveness) was demonstrated from the drug-loaded nanocomposites. In vitro testing with breast cancer cells showed that the nanoplatform could be successfully used for PDT. When further conjugating the nanoplatform with a cell-penetrating peptide (CPP), efficacy of both SERS detection and PDT is enhanced.
The rational design of plasmonic nanoparticles for SERS sensing involved the synthesis of silver-coated gold nanostars. Investigation of the silver coating process revealed that preservation of the gold nanostar tips was necessary to achieve the increased SERS intensity. At the optimal amount of silver coating, the SERS intensity is increased by over an order of magnitude. It was determined that a majority of the increased SERS signal can be attributed to reducing the inner filter effect, as the silver coating process moves the extinction of the particles far away from the laser excitation line. To improve reproducibility and quantitative SERS detection, an internal standard was incorporated into the particles. By embedding a small-molecule dye between the gold and silver surfaces, SERS signal was obtained both from the internal dye and external analyte on the particle surface. By normalizing the external analyte signal to the internal reference signal, reproducibility and quantitative analysis are improved in a variety of experimental conditions.