991 resultados para planar gauge
Resumo:
We present a complete system for Spectral Cauchy characteristic extraction (Spectral CCE). Implemented in C++ within the Spectral Einstein Code (SpEC), the method employs numerous innovative algorithms to efficiently calculate the Bondi strain, news, and flux.
Spectral CCE was envisioned to ensure physically accurate gravitational wave-forms computed for the Laser Interferometer Gravitational wave Observatory (LIGO) and similar experiments, while working toward a template bank with more than a thousand waveforms to span the binary black hole (BBH) problem’s seven-dimensional parameter space.
The Bondi strain, news, and flux are physical quantities central to efforts to understand and detect astrophysical gravitational wave sources within the Simulations of eXtreme Spacetime (SXS) collaboration, with the ultimate aim of providing the first strong field probe of the Einstein field equation.
In a series of included papers, we demonstrate stability, convergence, and gauge invariance. We also demonstrate agreement between Spectral CCE and the legacy Pitt null code, while achieving a factor of 200 improvement in computational efficiency.
Spectral CCE represents a significant computational advance. It is the foundation upon which further capability will be built, specifically enabling the complete calculation of junk-free, gauge-free, and physically valid waveform data on the fly within SpEC.
Resumo:
The photorefractive planar lens for converting a vertical incident plane wave to a lateral-spread spherical wave and vice versa, is suggested. Using the two-beam coupled-wave theory, the coupled wave equations are derived and their half-analytical solutions are also given in terms of an infinite series. The diffraction properties (beam profiles, diffraction efficiency) of the local volume grating in the lens are presented. And the focusing property of the lens is discussed and compared with that of an ideal convergent spherical wave. It is demonstrated that the suggested photorefractive planar lens shows a good focusing effect. (c) 2004 Elsevier GmbH. All rights reserved.
Resumo:
We propose a novel structure of planar optical configuration for implementation of the space-to-time conversion for femtosecond pulse shaping. The previous apparatuses of femtosecond pulse shaping are 4f Fourier-transforming type system that is usually large, expensive, difficult to align. The planar integration of free-space optical systems on solid substrates is an optical module with the attractive advantages of compact, reliable and robust. This apparatus is analyzed in details and the design of the particular lens for femtosecond pulse shaping based on planar optics is presented. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
A planar waveguide ring resonator was fabricated by organic-inorganic hybrid sol-gel materials; its sensitivity to ethanol vapor was experimentally investigated. It was found that dips in the transmission spectrum of the device shifted to longer wavelengths with increasing the ethanol concentration, and its sensitivity showed a linear relation with the ethanol concentration, showing a coefficient of 1.13 pm/ppm. In addition, the transmission loss of the ring resonator decreased with increasing the ethanol concentration. The measured characteristics suggest that the device may be considered as one of the candidates of alcohol vapor sensors. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A wavelength division multiplexer (WDM) for 980/1550 nm based on planar curved waveguide coupler (CWC) is proposed. Compared with conventional parallel straight waveguide coupler (SWC), this structure has more flexibility with two variable parameters of bending radius R and minimum edge-to-edge spacing do, which are the two main parameters for the splitting ratio of coupler and decrease the complexity of device design and fabrication. Based on coupled mode theory (CMT) and waveguide theory, R and do of the WDM CWC are designed to be R = 13.28 m and d(0) = 4.39 mu m. The contrast ratio (CR) and insertion loss (IL) for 980 and 1550 nm are CR1 = 24.62 dB, CR2 = 24.56 dB and IL1 = 0.014 dB, IL2 = 0.015 dB, respectively. The 3D beam propagation method (BPM) is used to verify the validity of the design result. The influence of R and d(0) variations on the device performance is analyzed. For CR > 20 dB, the variation ranges of R and d(0) should be within -0.10 to +0.44 m and -0.05 to + 0.02 mu m, respectively. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
We present a nondestructive technique to predict the refractive index profiles of isotropic planar waveguides, on which a thin gold film is deposited to as the cladding. The negative dielectric constant of the metal results in significant differences of effective indices between TE and TM modes. The two polarized modes and a surface plasmon resonance (SPR) with abundant information of the surface index can be used to construct the refractive index profiles of single-mode and two-mode waveguides at a fixed wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A planar waveguide laser operating in a negative branch unstable resonator is Q-switched by an acoustooptic mod latorin anew configuration, providing effective, high-speed switching. The laser using a 200-mu m Nd:YAG core, face pumped by 10 laser diode bars, has produced 100-W output in a good beam quality at 100-kHz pulse rate, and 4.5 mJ at lower frequency with 15-ns pulse duration.
Resumo:
Output beam quality of edge pumped planar waveguide lasers with confocal unstable resonators is investigated by diffraction methods, taking into account gain saturation, asymmetric pumping, and beam interaction. The influences of pumping uniformity, doping concentration, cavity length and effective Fresnel number are analyzed with respect to output beam quality and pumping efficiency. It is found that good beam quality and high efficiency can be obtained with asymmetric pumping and optimized negative branch confocal unstable resonators. (c) 2005 The Optical Society of Japan.
Resumo:
We describe high-power planar waveguide laser which can achieve single-mode output from a multi-mode structure. The planar waveguide is constructed with incomplete self-imaging properties, by which the coupling loss of each guided mode can be discriminated. Thermal lens effects are evaluated for single-mode operation of such high-power diode-pumped solid-state lasers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Multi-mode rate equations have been developed to investigate mode competition in high-power acousto-optically Q-switched planar waveguide lasers. The mode competition arises from coupling effects and temporal losses in the transform between guided modes and free-space propagation. Pulse-to-pulse instability and temporal beam distortions are enlarged by mode competition when the laser works in the multi-mode regime. The influence of parasitic oscillation is also discussed. A Nd:YAG planar waveguide laser has been established with a folded hybrid/unstable resonator. A maximum average power of 83 W with a beam propagation factor M-x(2) x M-y(2) = 1.2 x 1.4 is obtained. The theoretical simulation agrees well with the experimental observation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Thermal effects in Nd:YAG planar waveguide lasers with non-symmetrical claddings are discussed. The heat generated in the active core can be removed more efficiently by directly contacting the active core to the heat sink. Several cladding materials are compared to optimize the heat removal. Furthermore, uniform pumping is achieved with oblique edge-pumping technique. Using quasi-CW pumping at 1 KHz repetition rate, an average output power of 280 W with a slope efficiency of 38% is obtained with a positive unstable resonator. (C) 2008 Elsevier B.V. All rights reserved.