186 resultados para pineapple


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-standing diamond films were grown by DC Arcjet plasma enhanced chemical vapor deposition (CVD). The feed gasses were Ar/H 2/CH 4, in which the flow ratio of CH 4 to H 2 (FCH4/FH2) was varied from 5% to 20%. Two distinct morphologies were observed by scanning electron microscope (SEM), i.e. the pineapple-like morphology and the cauliflower-like morphology. It was found that the morphologies of the as-grown films are strongly dependent on the flow ratio of CH 4 to H 2 in the feed gasses. High resolution transmission electron microscope (HRTEM) survey results revealed that there were nanocrystalline grains within the pineapple-like films whilst there were ultrananocrystalline grains within cauliflower-like films. X-ray diffraction (XRD) results suggested that (110) crystalline plane was the dominant surface in the cauliflower-like films whilst (100) crystalline plane was the dominant surface in the pineapple-like films. Raman spectroscopy revealed that nanostructured carbon features could be observed in both types of films. Plasma diagnosis was carried out in order to understand the morphology dependent growth mechanism. It could be concluded that the film morphology was strongly influenced by the density of gas phases. The gradient of C2 radical was found to be different along the growth direction under the different growth conditions. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work has the main objective to obtain nano and microcrystals of cellulose, extracted from the pineapple leaf fibres (PALF), as reinforcement for the manufacture of biocomposite films with polymeric matrices of Poly(vinyl alcohol) (PVA) and Poly(lactic acid) (PLA). The polymer matrices and the nano and microcrystals of cellulose were characterised by means of TGA, FTIR and DSC. The analysis was performed on the pineapple leaves to identify the macro and micronutrients. The fibers of the leaves of the pineapple were extracted in a desfibradeira mechanical. The PALF extracted were washed to remove washable impurities and subsequently treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) in the removal of impurities, such as fat, grease, pectates, pectin and lignin. The processed PALF fibers were hydrolysed in sulfuric acid (H2SO4) at a concentration of 13.5 %, to obtain nano and microcrystals of cellulose. In the manufacture of biocomposite films, concentrations of cellulose, 0 %, 1 %, 3 %, 6 %, 9% and 12% were used as reinforcement to the matrices of PVA and PLA. The PVA was dissolved in distilled water at 80 ± 5 oC and the PLA was dissolved in dichloromethane at room temperature. The manufacture of biocompósitos in the form of films was carried out by "casting". Tests were carried out to study the water absorption by the films and mechanical test of resistance to traction according to ASTM D638-10 with a velocity of 50 mm/min.. Chi-square statistical test was used to check for the existence of significant differences in the level of 0.05: the lengths of the PALF, lengths of the nano and microcrystals of cellulose and the procedures used for the filtration using filter syringe of 0.2 μm or filtration and centrifugation. The hydrophilicity of biocompósitos was analysed by measuring the contact angle and the thickness of biocompósitos were compared as well as the results of tests of traction. Statistical T test - Student was also applied with the significance level (0.05). In biodegradation, Sturm test of standard D5209 was used. Nano and microcrystals of cellulose with lengths ranging from 7.33 nm to 186.17 nm were found. The PVA films showed average thicknesses of 0.153 μm and PLA 0.210 μm. There is a strong linear correlation directly proportional between the traction of the films of PVA and the concentration of cellulose in the films (composite) (0,7336), while the thickness of the film was correlated in 0.1404. Nano and microcrystals of cellulose and thickness together, correlated to 0.8740. While the correlation between the cellulose content and tensile strength was weak and inversely proportional (- 0,0057) and thickness in -0.2602, totaling -0,2659 in PLA films. This can be attributed to the nano and microcrystals of cellulose not fully adsorbed to the PLA matrix. In the comparison of the results of the traction of the two polymer matrices, the nano and microcrystals have helped in reducing the traction of the films (composite) of PLA. There was still the degradation of the film of PVA, within a period of 20 days, which was not seen in the PLA film, on the other hand, the observations made in the literature, the average time to start the degradation is above 60 days. What can be said that the films are biodegradable composites, with hydrophilicity and the nano and microcrystals of cellulose, contribute positively in the improvement of the results of polymer matrices used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lignocellulosicwaste from the pineapple production is a raw material useful for the xylose production by hydrolysis and it can be converted to xylitol. The objective of this work was to study the hydrolysis of pineapple peel with sulfuric acid at variable concentration (2-6%), reaction time (0-350 min) and temperature at 98 ˚C. The concentration of xylose, glucose and degradation products as acetic acid and furfural was determined. Optimal conditions found for hydrolysis were 6% H2SO4 at 98 ˚C for 83 min which yield was 26,9 g xylose/L, 2,61 g glucose/L, 7,71 g acetic acid/L and 0,29 g furfural/L.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The routine analysis for quantization of organic acids and sugars are generally slow methods that involve the use and preparation of several reagents, require trained professional, the availability of special equipment and is expensive. In this context, it has been increasing investment in research whose purpose is the development of substitutive methods to reference, which are faster, cheap and simple, and infrared spectroscopy have been highlighted in this regard. The present study developed multivariate calibration models for the simultaneous and quantitative determination of ascorbic acid, citric, malic and tartaric and sugars sucrose, glucose and fructose, and soluble solids in juices and fruit nectars and classification models for ACP. We used methods of spectroscopy in the near infrared (Near Infrared, NIR) in association with the method regression of partial least squares (PLS). Were used 42 samples between juices and fruit nectars commercially available in local shops. For the construction of the models were performed with reference analysis using high-performance liquid chromatography (HPLC) and refractometry for the analysis of soluble solids. Subsequently, the acquisition of the spectra was done in triplicate, in the spectral range 12500 to 4000 cm-1. The best models were applied to the quantification of analytes in study on natural juices and juice samples produced in the Paraná Southwest Region. The juices used in the application of the models also underwent physical and chemical analysis. Validation of chromatographic methodology has shown satisfactory results, since the external calibration curve obtained R-square value (R2) above 0.98 and coefficient of variation (%CV) for intermediate precision and repeatability below 8.83%. Through the Principal Component Analysis (PCA) was possible to separate samples of juices into two major groups, grape and apple and tangerine and orange, while for nectars groups separated guava and grape, and pineapple and apple. Different validation methods, and pre-processes that were used separately and in combination, were obtained with multivariate calibration models with average forecast square error (RMSEP) and cross validation (RMSECV) errors below 1.33 and 1.53 g.100 mL-1, respectively and R2 above 0.771, except for malic acid. The physicochemical analysis enabled the characterization of drinks, including the pH working range (variation of 2.83 to 5.79) and acidity within the parameters Regulation for each flavor. Regression models have demonstrated the possibility of determining both ascorbic acids, citric, malic and tartaric with successfully, besides sucrose, glucose and fructose by means of only a spectrum, suggesting that the models are economically viable for quality control and product standardization in the fruit juice and nectars processing industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The system built to characterize electrodes and, consequently, deposited fine films are constituted by a hollow cathode that works to discharges and low pressures (approximately 10-3 to 5 mbar), a source DC (0 to 1200 V), a cylindrical camera of closed borossilicato for flanges of stainless steel with an association of vacuum bombs mechanical and spread. In the upper flange it is connected the system of hollow cathode, which possesses an entrance of gas and two entrances for its refrigeration, the same is electrically isolated of the rest of the equipment and it is polarized negatively. In front of the system of hollow cathode there is a movable sample in stainless steel with possibility of moving in the horizontal and vertical. In the vertical, the sample can vary its distance between 0 and 70 mm and, in the horizontal, can leave completely from the front of the hollow cathode. The sample and also the cathode hollow are equipped with cromel-alumel termopares with simultaneous reading of the temperatures during the time of treatment. In this work copper electrodes, bronze, titanium, iron, stainless steel, powder of titanium, powder of titanium and silício, glass and ceramic were used. The electrodes were investigated relating their geometry change and behavior of the plasma of the cavity of hollow cathode and channel of the gas. As the cavity of hollow cathode, the analyzed aspects were the diameter and depth. With the channel of the gas, we verified the diameter. In the two situations, we investigated parameters as flow of the gas, pressure, current and applied tension in the electrode, temperature, loss of mass of the electrode with relationship at the time of use. The flow of gas investigated in the electrodes it was fastened in a work strip from 15 to 6 sccm, the constant pressure of work was among 2.7 to 8 x 10-2 mbar. The applied current was among a strip of work from 0,8 to 0,4 A, and their respective tensions were in a strip from 400 to 220 V. Fixing the value of the current, it was possible to lift the curve of the behavior of the tension with the time of use. That curves esteem in that time of use of the electrode to its efficiency is maximum. The temperatures of the electrodes were in the dependence of that curves showing a maximum temperature when the tension was maximum, yet the measured temperatures in the samples showed to be sensitive the variation of the temperature in the electrodes. An accompaniment of the loss of mass of the electrode relating to its time of use showed that the electrodes that appeared the spherical cavities lost more mass in comparison with the electrodes in that didn't appear. That phenomenon is only seen for pressures of 10-2 mbar, in these conditions a plasma column is formed inside of the channel of the gas and in certain points it is concentrated in form of spheres. Those spherical cavities develop inside of the channel of the gas spreading during the whole extension of the channel of the gas. The used electrodes were cut after they could not be more used, however among those electrodes, films that were deposited in alternate times and the electrodes that were used to deposit films in same times, those films were deposited in the glass substrata, alumina, stainless steel 420, stainless steel 316, silício and steel M2. As the eletros used to deposit films in alternate time as the ones that they were used to deposit in same times, the behavior of the thickness of the film obeyed the curve of the tension with relationship the time of use of the electrode, that is, when the tension was maximum, the thickness of the film was also maximum and when the tension was minimum, the thickness was minimum and in the case where the value of the tension was constant, the thickness of the film tends to be constant. The fine films that were produced they had applications with nano stick, bio-compatibility, cellular growth, inhibition of bacterias, cut tool, metallic leagues, brasagem, pineapple fiber and ornamental. In those films it was investigated the thickness, the adherence and the uniformity characterized by sweeping electronic microscopy. Another technique developed to assist the production and characterization of the films produced in that work was the caloteste. It uses a sphere and abrasive to mark the sample with a cap impression, with that cap form it is possible to calculate the thickness of the film. Through the time of life of the cathode, it was possible to evaluate the rate of waste of its material for the different work conditions. Values of waste rate up to 3,2 x 10-6 g/s were verified. For a distance of the substratum of 11 mm, the deposited film was limited to a circular area of 22 mm diameter mm for high pressures and a circular area of 75 mm for pressure strip. The obtained films presented thickness around 2,1 µm, showing that the discharge of arch of hollow cathode in argon obeys a curve characteristic of the tension with the time of life of the eletrodo. The deposition rate obtained in this system it is of approximately 0,18 µm/min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The availability of fresh-cut fruit (FCF) in the marketplace has been increasing in Portugal, although reports of its microbial quality are not known. Due to the growing concerns of these commodities over their microbial safety, the objectives of this work were to study the microbiological quality and prevalence of Salmonella and Listeria monocytogenes on fresh-cut fruits sold in southern Portugal. A study to examine the changes in pH and microbial counts, before and after the expiration dates, was also made. A total of 160 samples was purchased in the local grocery stores between September 2011 and August 2014, before their sell-by date. These samples were assayed for aerobic mesophilic (AM) and psychrotrophic (AP) microorganisms, yeasts and molds (YM), lactic-acid bacteria (LAB), coliforms (TC), Escherichia coli and coagulase positive staphylococci as well as L. monocytogenes and Salmonella. The microbiological counts ranged from 3.0-9.2 lg cfu/g (AM); 2.2–10.7 lg cfu/g (AP); 2.3–10.4 lg cfu/g (YM); 1.9–9.0 lg cfu/g (LAB) and less than 1–9.1 lg cfu/g (TC). The melons and watermelon presented the highest levels of the microbial quality parameters studied. However, no E. coli, staphylococci, Salmonella and L. monocytogenes were detected in any of the samples. After the sell-by date, an increase of the AM, AP, LAB and YM values was observed in all fruits. Conversely, the differences found in TC counts before and after the best-before date had no statistical significance. A decrease in pH was observed in all fruits except pineapple whose pH slightly increased after 14 days of storage. The results highlight the importance of preventing contamination and cross contamination, selecting adequate decontamination technologies and maintaining a strict temperature control during processing, distribution and selling of FCF.