382 resultados para phosphatidyl inositol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathogenesis of brain edema in patients with chronic liver disease (CLD) and minimal hepatic encephalopathy (HE) remains undefined. This study evaluated the role of brain lactate, glutamine and organic osmolytes, including myo-inositol and taurine, in the development of brain edema in a rat model of cirrhosis.Six-week bile-duct ligated (BDL) rats were injected with (13)C-glucose and de novo synthesis of lactate, and glutamine in the brain was quantified using (13)C nuclear magnetic resonance spectroscopy (NMR). Total brain lactate, glutamine, and osmolytes were measured using (1)H NMR or high performance liquid chromatography. To further define the interplay between lactate, glutamine and brain edema, BDL rats were treated with AST-120 (engineered activated carbon microspheres) and dichloroacetate (DCA: lactate synthesis inhibitor).Significant increases in de novo synthesis of lactate (1.6-fold, p<0.001) and glutamine (2.2-fold, p<0.01) were demonstrated in the brains of BDL rats vs. SHAM-operated controls. Moreover, a decrease in cerebral myo-inositol (p<0.001), with no change in taurine, was found in the presence of brain edema in BDL rats vs. controls. BDL rats treated with either AST-120 or DCA showed attenuation in brain edema and brain lactate. These two treatments did not lead to similar reductions in brain glutamine.Increased brain lactate, and not glutamine, is a primary player in the pathogenesis of brain edema in CLD. In addition, alterations in the osmoregulatory response may also be contributing factors. Our results suggest that inhibiting lactate synthesis is a new potential target for the treatment of HE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le remodelage cardiaque est le processus par lequel la structure ou la fonction cardiaque change en réponse à un déséquilibre pathophysiologique tel qu'une maladie cardiaque, un contexte d'arythmie prolongée ou une modification de l'équilibre hormonal. Le système rénine-angiotensine (SRA) est un système hormonal largement étudié et il est impliqué dans de nombreuses activités associées au remodelage cardiovasculaire. L’existence d'un système circulatoire couplé à un système de tissus locaux est une représentation classique, cependant de nouvelles données suggèrent un SRA indépendant et fonctionnellement actif à l'échelle cellulaire. La compréhension de l'activité intracellulaire du SRA pourrait mener à de nouvelles pistes thérapeutiques qui pourraient prévenir un remodelage cardiovasculaire défavorable. L'objectif de cette thèse était d'élucider le rôle du SRA intracellulaire dans les cellules cardiaques. Récemment, les récepteurs couplés aux protéines G (RCPG), les protéines G et leurs effecteurs ont été détectés sur des membranes intracellulaires, y compris sur la membrane nucléaire, et les concepts de RCPG intracellulaires fonctionnels sont en voie d'être acceptés comme une réalité. Nous avons dès lors fait l'hypothèse que la signalisation du SRA délimitant le noyau était impliquée dans le contrôle de l'expression des gènes cardiaques. Nous avons démontré la présence de récepteurs d'angiotensine de type-1 (AT1R) et de type-2 (AT2R) nucléaires dans les cardiomyocytes ventriculaires adultes et dans une fraction nucléaire purifiée de tissu cardiaque. Des quantités d'Ang II ont été détectées dans du lysat de cardiomyocytes et des microinjections d'Ang-II-FITC ont donné lieu à des liaisons préférentielles aux sites nucléaires. L'analyse transcriptionnelle prouve que la synthèse d'ARN de novo dans des noyaux isolés stimulés à l'Ang-II, et l'expression des ARNm de NF-κB étaient beaucoup plus importants lorsque les noyaux étaient exposés à de l'Ang II par rapport aux cardiomyocytes intacts. La stimulation des AT1R nucléaires a engendré une mobilisation de Ca2+ via les récepteurs de l'inositol trisphosphate (IP3R), et le blocage des IP3R a diminué la réponse transcriptionnelle. Les méthodes disponibles actuellement pour l'étude de la signalisation intracrine sont limitées aux méthodes indirectes. L'un des objectifs de cette thèse était de synthétiser et caractériser des analogues d'Ang-II cellule-perméants afin d’étudier spécifiquement dans les cellules intactes l'activité intracellulaire du SRA. Nous avons synthétisé et caractérisé pharmacologiquement des analogues photosensibles Ang-II encapsulée en incorporant un groupement 4,5-diméthoxy-2-nitrobenzyl (DMNB) photoclivable sur les sites actifs identifiés du peptide. Chacun des trois analogues d'Ang II encapsulée synthétisés et purifiés: [Tyr(DMNB)4]Ang-II, Ang-II-ODMNB et [Tyr(DMNB)4]Ang-II-ODMNB a montré une réduction par un facteur deux ou trois de l'affinité de liaison envers AT1R et AT2R dans les dosages par liaison compétitive et une activité réduite dans la contraction de l'aorte thoracique. La photostimulation de [Tyr(DMNB)4]Ang-II dans des cellules HEK a augmenté la phosphorylation d'ERK1/2 (via AT1R) et la production de cGMP (via AT2R) alors que dans les cardiomyocytes isolés elle générait une augmentation de Ca2+ nucléoplasmique et initiait la synthèse d'ARNr 18S et d'ARNm du NF-κB. Les fibroblastes sont les principaux générateurs de remodelage cardiaque structurel, et les fibroblastes auriculaires sont plus réactifs aux stimuli profibrotiques que les fibroblastes ventriculaires. Nous avons émis l'hypothèse que l’Ang-II intracellulaire et l'activation des AT1R et AT2R nucléaires associés contrôlaient les profils d'expression des gènes des fibroblastes via des systèmes de signalisation distincts et de ce fait jouaient un rôle majeur dans le développement de la fibrose cardiaque. Nous avons remarqué que les fibroblastes auriculaires expriment l’AT1R et l’AT2R nucléaire et l'Ang-II au niveau intracellulaire. L’expression d'AT1R nucléaire a été régulés positivement dans les cas d’insuffisance cardiaque (IC), tandis que l'AT2R nucléaire a été glycosylé post-traductionnellement. La machinerie protéique des protéines G, y compris Gαq/11, Gαi/3, et Gβ, a été observée dans des noyaux isolés de fibroblastes. AT1R et AT2R régulent l'initiation de la transcription du fibroblaste via les voies de transduction de signal d'IP3R et du NO. La photostimulation de [Tyr(DMNB)4]Ang-II dans une culture de fibroblastes auriculaire déclenche la libération de Ca2+ nucléoplasmique, la prolifération, et la synthèse et sécrétion de collagène qui ne sont pas inhibées par les bloqueurs d'AT1R et/ou AT2R extracellulaires.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes Mellitus is a metabolic disorder associated with insulin deficiency, which not.only affects the carbohydrate metabolism but also is associated with various central and peripheral complications. Chronic hyperglycemia during diabetes mellitus is a major initiator of diabetic microvascular complications like retinopathy, neuropathy, The central nervous system (CNS) neurotransmitters play an important role in the regulation of glucose homeostasis. These neurotransmitters mediate rapid intracellular communications not only within the central nervous system but also in the peripheral tissues. They exert their function through receptors present in both neuronal and non neuronal cell surface that trigger second messenger signaling pathways. Dopamine is a neurotransmitter that has been implicated in various central neuronal degenerative disorders like Parkinson's disease and behavioral diseases like Schizophrenia. Dopamine is synthesised from tyrosine, stored in vesicles in axon terminals and released when the neuron is depolarised. Dopamine interacts with specific membrane receptors to produce its effect. Dopamine plays an important role both centrally and peripherally. The recent identification of five dopamine receptor subtypes provides a basis for understanding dopamine's central and peripheral actions . Dopamine receptors are classified into two major groups : DA D1 like and DA D2 like. Dopamine D1 like receptors consists of DA D1 and DA D5 receptors . Dopamine D2 like receptors consists of DA D2, DA D3 and DA D4 receptors. Stimulation of the DA D1 receptor gives rise to increased production of cAMP. Dopamine D2 receptors inhibit cAMP production, but activate the inositol phosphate second messenger system . Impairment of central dopamine neurotransmission causes muscle rigidity, hormonal regulation , thought disorder and cocaine addiction. Peripheral dopamine receptors mediate changes in blood flow, glomerular filtration rate, sodium excretion and catecholamine release. The dopamine D2 receptors increased in the corpus striatum and cerebral cortex but decreased in the hypothalamus and brain stem indicating their involvement in regulating insulin secretion. Dopamine D2 receptor which has a stimulatory effecton insulin secretion decreased in the pancreatic islets during diabetes. Our in vitro studies confirmed the stimulatory role of dopamine D2 receptors in stimulation of glucose induced insulin secretion. A detailed study at the molecular level on the mechanisms involved in the role of dopamine in insulin secretion, its functional modification could lead to therapeutic interventions that will have immense clinical importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Department of Biotechnology, Cochin University of Science and Technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En aquest estudi s'ha determinat que al augmentar el ritme d'extraccions de semen es produeixen canvis en el patró d'absorció i secreció del fluid epididimari, que provoquen alteracions en la maduració epididimaria dels espermatozoides i un desenvolupament anòmal de la motilitat espermàtica. La concentració de glutamat i carnitina al fluid epididimari augmenten al llarg del conducte epididimari, alhora que la concentració de myo-inositol disminueix. El contingut de myo-inositol a l'interior dels espermatozoides disminueix, mentre que el contingut de glutamat augmenta a partir del caput distal i el contingut de carnitina no varia al llarg del conducte. S'ha determinat la presència de la ruta del poliol a l'epidídim de porcí. Els resultats obtinguts indiquen que la glucosa difon de la sang cap al fluid epididimari, és convertida a sorbitol per l'aldosa reductasa, i aquest sorbitol s'acumula al fluid luminal i és convertit a fructosa per l'acció de la sorbitol deshidrogenasa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytase (myo-inositol-1,2,3,4,5,6-hexakisphosphate phosphohydrolase, EC 3.1.3.26), which catalyses the step-wise hydrolysis of phytic acid, was purified from cotyledons of dormant Corylus avellana L. seeds. The enzyme was separated from the major soluble acid phosphatase by successive (NH4)2SO4 precipitation, gel filtration and cation exchange chromatography resulting in a 300-fold purification and yield of 7.5%. The native enzyme positively interacted with Concanavalin A suggesting that it is putatively glycosylated. After size exclusion chromatography and SDS–PAGE it was found to be a monomeric protein with molecular mass 72±2.5 kDa. The hazel enzyme exhibited optimum activity for phytic acid hydrolysis at pH 5 and, like other phytases, had broad substrate specificity. It exhibited the lowest Km (162 μM) and highest specificity constant (Vmax/Km) for phytic acid, indicating that this is the preferred in vivo substrate. It required no metal ion as a co-factor, while inorganic phosphate and fluoride competitively inhibited enzymic activity (Ki=407 μM and Ki=205 μM, respectively).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Myo-inositol hexaphosphate (IP6) or phytic acid is found mostly in cereals and legumes and is thought to possess anti-carcinogenic properties. Aim: To isolate and identify faecal bacteria capable of phytic acid metabolism and to assess the effectiveness of prebiotics (dietary oligosaccharides, metabolised by selective colonic bacteria) in preserving the integrity of phytic acid. Methods: Faecal samples from three volunteers were used in continuous culture experiments under varying conditions of pH, substrate concentration and dilution rates, seventy three different isolates cultured at steady state were then screened for phytic acid metabolism and identified through partial sequencing of their 16S rRNA genes (16S ribosomal ribonucleic acid). Utilisation of phytic acid was also assessed in a continuous culture system enriched with prebiotic fructooligosaccharides (FOS). Results: Bacteroides spp., Clostridium spp. and facultatively anaerobic bacteria generally appeared to maintain viable counts in the presence of phytic acid. Bifidobacterium spp. and Lactobacillus spp. appeared less able to maintain viable counts in the presence of phytic acid. These results were confirmed by an increase in viable counts of Bacteroides spp., Clostridium spp. and a decrease in viable counts of Bifidobacterium spp. and Lactobacillus spp. once phytic acid was introduced to a FOS enriched continuous culture. Conclusions: The phytate metabolising biodiversity from the human large intestine does not appear to encompass major bacterial genera associated with beneficial or benign health effects (e.g. Lactobacillus spp. and Bifidobacterium spp).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To characterize the impact of gut microbiota on host metabolism, we investigated the multicompartmental metabolic profiles of a conventional mouse strain (C3H/HeJ) (n=5) and its germ-free (GF) equivalent (n=5). We confirm that the microbiome strongly impacts on the metabolism of bile acids through the enterohepatic cycle and gut metabolism (higher levels of phosphocholine and glycine in GF liver and marked higher levels of bile acids in three gut compartments). Furthermore we demonstrate that (1) well-defined metabolic differences exist in all examined compartments between the metabotypes of GF and conventional mice: bacterial co-metabolic products such as hippurate (urine) and 5-aminovalerate (colon epithelium) were found at reduced concentrations, whereas raffinose was only detected in GF colonic profiles. (2) The microbiome also influences kidney homeostasis with elevated levels of key cell volume regulators (betaine, choline, myo-inositol and so on) observed in GF kidneys. (3) Gut microbiota modulate metabotype expression at both local (gut) and global (biofluids, kidney, liver) system levels and hence influence the responses to a variety of dietary modulation and drug exposures relevant to personalized health-care investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first application of high field NMR spectroscopy (800 MHz for 1H observation) to human hepatic bile (as opposed to gall bladder bile) is reported. The bile sample used for detailed investigation was from a donor liver with mild fat infiltration, collected during organ retrieval prior to transplantation. In addition, to focus on the detection of bile acids in particular, a bile extract was analysed by 800 MHz 1H NMR spectroscopy, HPLC-NMR/MS and UPLC-MS. In the whole bile sample, 40 compounds have been assigned with the aid of two-dimensional 1H–1H TOCSY and 1H–13C HSQC spectra. These include phosphatidylcholine, 14 amino acids, 10 organic acids, 4 carbohydrates and polyols (glucose, glucuronate, glycerol and myo-inositol), choline, phosphocholine, betaine, trimethylamine-N-oxide and other small molecules. An initial NMR-based assessment of the concentration range of some key metabolites has been made. Some observed chemical shifts differ from expected database values, probably due to a difference in bulk diamagnetic susceptibility. The NMR spectra of the whole extract gave identification of the major bile acids (cholic, deoxycholic and chenodeoxycholic), but the glycine and taurine conjugates of a given bile acid could not be distinguished. However, this was achieved by HPLC-NMR/MS, which enabled the separation and identification of ten conjugated bile acids with relative abundances varying from approximately 0.1% (taurolithocholic acid) to 34.0% (glycocholic acid), of which, only the five most abundant acids could be detected by NMR, including the isomers glycodeoxycholic acid and glycochenodeoxycholic acid, which are difficult to distinguish by conventional LC-MS analysis. In a separate experiment, the use of UPLC-MS allowed the detection and identification of 13 bile acids. This work has shown the complementary potential of NMR spectroscopy, MS and hyphenated NMR/MS for elucidating the complex metabolic profile of human hepatic bile. This will be useful baseline information in ongoing studies of liver excretory function and organ transplantation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing evidence suggests that obesity is a chronic inflammatory disease, in which adipose tissue is involved in a network of endocrine signals to modulate energy homeostasis. These oxidative-inflammatory pathways, which are associated with cardiovascular complications, are also observed during the aging process. In this study, we investigated the interaction between aging and the development of obesity in a hyperphagic rat model. Metabolic profiles of the liver, white adipose tissue (WAT) and heart from young and adult Zucker lean (fa/+) and obese (fa/fa) rats were characterized using a (1)H NMR-based metabonomics approach. We observed premature metabolic modifications in all studied organs in obese animals, some of which were comparable to those observed in adult lean animals. In the cardiac tissue, young obese rats displayed lower lactate and scyllo-inositol levels associated with higher creatine, choline and phosphocholine levels, indicating an early modulation of energy and membrane metabolism. An early alteration of the hepatic methylation and transsulfuration pathways in both groups of obese rats indicated that these pathways were affected before diabetic onset. These findings therefore support the hypothesis that obesity parallels some metabolic perturbations observed in the aging process and provides new insights into the metabolic modifications occurring in pre-diabetic state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interplay between dietary nutrients, gut microbiota and mammalian host tissues of the gastrointestinal tract is recognised as highly relevant for host health. Combined transcriptome, metabonome and microbial profiling tools were employed to analyse the dynamic responses of germfree mouse colonic mucosa to colonisation by normal mouse microbiota (conventionalisation) at different time-points during 16 days. The colonising microbiota showed a shift from early (days 1 and 2) to later colonisers (days 8 and 16). The dynamic changes in the microbial community were rapidly reflected by the urine metabolic profiles (day 1) and at later stages (day 4 onward) by the colon mucosa transcriptome and metabolic profiles. Correlations of host transcriptomes, metabolite patterns and microbiota composition revealed associations between Bacilli and Proteobacteria, and differential expression of host genes involved in energy and anabolic metabolism. Differential gene expression correlated with scyllo- and myo-inositol, glutamine, glycine and alanine levels in colonic tissues during the time span of conventionalisation. Our combined time-resolved analyses may help to expand the understanding of host-microbe molecular interactions during the microbial establishment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to investigate the capacity of three perennial legume species to access sources of varyingly soluble phosphorus (P) and their associated morphological and physiological adaptations. Two Australian native legumes with pasture potential (Cullen australasicum and Kennedia prostrata) and Medicago sativa cv. SARDI 10 were grown in sand under two P levels (6 and 40 µg P g−1) supplied as Ca(H2PO4)2·H2O (Ca-P, highly soluble, used in many fertilizers) or as one of three sparingly soluble forms: Ca10(OH)2(PO4)6 (apatite-P, found in relatively young soils; major constituent of rock phosphate), C6H6O24P6Na12 (inositol-P, the most common form of organic P in soil) and FePO4 (Fe-P, a poorly-available inorganic source of P). All species grew well with soluble P. When 6 µg P g−1 was supplied as sparingly soluble P, plant dry weight (DW) and P uptake were very low for C. australasicum and M. sativa (0.1–0.4 g DW) with the exception of M. sativa supplied with apatite-P (1.5 g). In contrast, K. prostrata grew well with inositol-P (1.0 g) and Fe-P (0.7 g), and even better with apatite-P (1.7 g), similar to that with Ca-P (1.9 g). Phosphorus uptake at 6 µg P g−1 was highly correlated with total root length, total rhizosphere carboxylate content and total rhizosphere acid phosphatase (EC 3.1.3.2) activity. These findings provide strong indications that there are opportunities to utilize local Australian legumes in low P pasture systems to access sparingly soluble soil P and increase perennial legume productivity, diversity and sustainability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The p-nitrophenyl phosphomonoesterase assay (p NPPase) is commonly used to measure cell-wall-associated and extracellular phosphatase activity of soil fungi. p NPPases are usually assayed in the context of fungal nutrition, where inorganic P supply might be enhanced by the mineralisation of monoester organic P sources in the soil. The importance of the assay to the P nutrition of soil fungi is considered based on the evidence currently available including the consistency of methodological approach. The nature of organic P in the soil and the relevance of the assay to some specific soil substrates is discussed, particularly the chemistry and bioavailability of myo-inositol hexakisphosphate and the lower inositol phosphates. The evidence for the long-term stability of p NPPases in the soil is examined in the light of the persistence of p NPPase in soils. The role of persistent extracellular fungal p NPPases in the soil P cycle is discussed. Conclusions from p NPPase based studies must be based upon an appreciation of the constraints of the assay and the complex chemistry of organic P and p NPPase in the soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelin A (ET(A)) transmembrane receptors predominate in rat cardiac myocytes. These are G protein-coupled receptors whose actions are mediated by the G(q) heterotrimeric G proteins. Through these, ET-1 binding to ET(A)-receptors stimulates the hydrolysis of membrane phosphatidylinositol 4,5-bisphosphate to diacylglycerol and inositol 1,4,5-trisphosphate. Diacylglycerol remains in the membrane whereas inositol 1,4,5-trisphosphate is soluble (though its importance in the cardiac myocyte is still debated). Isoforms of the phospholipid-dependent protein kinase, protein kinase C (PKC), are intracellular receptors for diacylglycerol. Cytoplasmic nPKCdelta and nPKCepsilon detect increases in membrane diacylglycerols and translocate to the membrane. This brings about PKC activation, though modifications additional to binding to phospholipids and diacylglycerol are involved. The next event (probably associated with PKC activation) is the activation of the membrane-bound small G protein Ras by exchange of GTP for GDP. Ras.GTP loading translocates Raf family mitogen-activated protein kinase (MAPK) kinase kinases to the membrane, initiates the activation of Raf, and thus activates the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade. Over longer times, two analogous protein kinase cascades, the c-Jun N-terminal kinase and p38-mitogen-activated protein kinase cascades, become activated. As the signals originating from the ET(A) receptor are transmitted through these protein kinase pathways, other signalling molecules become phosphorylated, thus changing their biological activities. For example, ET-1 increases the expression of the c-jun transcription factor gene, and increases abundance and phosphorylation of c-Jun protein. These changes in c-Jun expression and phosphorylation are likely to be important in the regulation of gene transcription.