964 resultados para phonon anomaly
Resumo:
We study the phonon dispersion, cohesive and thermal properties of raxe gas solids Ne, Ar, Kr, and Xe, using a variety of potentials obtained from different approaches; such as, fitting to crystal properties, purely ab initio calculations for molecules and dimers or ab initio calculations for solid crystalline phase, a combination of ab initio calculations and fitting to either gas phase data or sohd state properties. We explore whether potentials derived with a certain approaxih have any obvious benefit over the others in reproducing the solid state properties. In particular, we study phonon dispersion, isothermal ajid adiabatic bulk moduli, thermal expansion, and elastic (shear) constants as a function of temperatiue. Anharmonic effects on thermal expansion, specific heat, and bulk moduli have been studied using A^ perturbation theory in the high temperature limit using the neaxest-neighbor central force (nncf) model as developed by Shukla and MacDonald [4]. In our study, we find that potentials based on fitting to the crystal properties have some advantage, particularly for Kr and Xe, in terms of reproducing the thermodynamic properties over an extended range of temperatiures, but agreement with the phonon frequencies with the measured values is not guaranteed. For the lighter element Ne, the LJ potential which is based on fitting to the gas phase data produces best results for the thermodynamic properties; however, the Eggenberger potential for Ne, where the potential is based on combining ab initio quantum chemical calculations and molecular dynamics simulations, produces results that have better agreement with the measured dispersion, and elastic (shear) values. For At, the Morse-type potential, which is based on M0ller-Plesset perturbation theory to fourth order (MP4) ab initio calculations, yields the best results for the thermodynamic properties, elastic (shear) constants, and the phonon dispersion curves.
Resumo:
A regional geochemical reconnaissance by bottom stream sediment sampling, has delineated an area of high metal content in the north central sector of the North Creek Watershed. Development of a geochemical model, relating to the relative chemical concentrations derived from the chemical analyses of bottom sediments, suspended sediments, stream waters and well waters collected from the north central sector, was designed to discover the source of the anomaly. Samples of each type of material were analysed by the A.R.L. Direct Reading Multi-element Emission Spectrograph Q.A. 137 for elements: Na, K, Ca, Sr, Si, As, Pb, Zn, Cd, Ni, Ti, Ag, Mo, Be, Fe, AI, Mn, Cu, Cr, P and Y. Anomalous results led to the discovery of a spring, the waters of which carried high concentrations of Zn, Cd, Pb, As, Ni, Ti, Ag, Sr and Si. In addition, the spring waters had high concentrations of Na, Ca, Mg, 504 , alkalinity, N03' and low concentrations of K, Cl and NH3. Increased specific conductivity (up to 2500 ~mho/cm.) was noted in the spring waters as well as increased calculated total dissolved solids (up to 2047 mg/l) and increased ionic strength (up to 0.06). On the other hand, decreases were noted in water temperature (8°C), pH (pH 7.2) and Eh (+.154 volts). Piezometer nests were installed in the anomalous north central sector of the watershed. In accordance with the slope of the piezometric surface from wells cased down to the till/bedrock interface, groundwater flow is directed from the recharge area (northwest of the anomaly) towards the artesian spring via the highly fractured dolostone aquifer of the Upper Eramosa Member. The bedrock aquifer is confined by the overlying Halton till and the underlying Lower Eramosa Member (Vinemount Shale). The oxidation of sphalerite and galena and the dissolution of gypsum, celestite, calcite, and dolomite within the Eramosa Member, contributed its highly, dissolved constituents to the circulating groundwaters, the age of which is greater than 20 years as determined by tritium dating. Groundwater is assumed to flow along the Vinemount Shale and discharge as an artesian spring where the shale unit becomes discontinuous. The anomaly is located on a topographic low where bedrock is close to the surface. Thermodynamic evaluation of the major ion speciation from the anomalous spring and surface waters, showed gypsum to be supersaturated in these spring waters. Downstream from the spring, the loss of carbon dioxide from the spring waters resulted in the supersaturation with respect to calcite, aragonite, magnesite and dolomite. This corresponded with increases in Eh (+.304 volts) and pH (pH 8.5) in the anomalous surface waters. In conclusion, the interaction of groundwaters within the highly, mineralized carbonate source (Eramosa Member) resulted in the characteristic Ca*Mg*HC03*S04 spring water at the anomalous site, which appeared to be the principle effect upon controlling the anomalous surface water chemistry.
Resumo:
By employing the embedded-atom potentials of Mei et ai.[l], we have calculated the dynamical matrices and phonon dispersion curves for six fee metals (Cu,Ag,Au,Ni,Pd and Pt). We have also investigated, within the quasiharmonic approximation, some other thermal properties of these metals which depend on the phonon density of states, such as the temperature dependence of lattice constant, coefficient of linear thermal expansion, isothermal and adiabatic bulk moduli, heat capacities at constant volume and constant pressure, Griineisen parameter and Debye temperature. The computed results are compared with the experimental findings wherever possible. The comparison shows a generally good agreement between the theoretical values and experimental data for all properties except the discrepancies of phonon frequencies and Debye temperature for Pd, Pt and Au. Further, we modify the parameters of this model for Pd and Pt and obtain the phonon dispersion curves which is in good agreement with experimental data.
Resumo:
The anharmonic, multi-phonon (MP), and Oebye-Waller factor (OW) contributions to the phonon limited resistivity (;0) of metals derived by Shukla and Muller (1979) by the doubletime temperature dependent Green function method have been numerically evaluated for Na and K in the high temperature limit. The anharmonic contributions arise from the cubic and quartic shift of phonons (CS, QS), and phonon width (W) and the interference term (1). The QS, MP and OW contributions to I' are also derived by the matrix element method and the results are in agreement with those of Shukla and Muller (1979). In the high temperature limit, the contributions to;O from each of the above mentioned terms are of the type BT2 For numerical calculations suitable expressions are derived for the anharmonic contributions to ~ in terms of the third and fourth rank tensors obtained by the Ewald procedure. The numerical calculation of the contributions to;O from the OW, MP term and the QS have been done exactly and from the CS, Wand I terms only approximately in the partial and total Einstein approximations (PEA, TEA), using a first principle approach (Shukla and Taylor (1976)). The results obtained indicate that there is a strong pairwise cancellation between the: OW and MP terms, the QS and CS and the Wand I terms. The sum total of these contributions to;O for Na and K amounts to 4 to 11% and 2 to 7%, respectively, in the PEA while in the TEA they amount to 3 to 7% and 1 to 4%, respectively, in the temperature range.
Resumo:
The atomic mean square displacement (MSD) and the phonon dispersion curves (PDC's) of a number of face-centred cubic (fcc) and body-centred cubic (bcc) materials have been calclllated from the quasiharmonic (QH) theory, the lowest order (A2 ) perturbation theory (PT) and a recently proposed Green's function (GF) method by Shukla and Hiibschle. The latter method includes certain anharmonic effects to all orders of anharmonicity. In order to determine the effect of the range of the interatomic interaction upon the anharmonic contributions to the MSD we have carried out our calculations for a Lennard-Jones (L-J) solid in the nearest-neighbour (NN) and next-nearest neighbour (NNN) approximations. These results can be presented in dimensionless units but if the NN and NNN results are to be compared with each other they must be converted to that of a real solid. When this is done for Xe, the QH MSD for the NN and NNN approximations are found to differ from each other by about 2%. For the A2 and GF results this difference amounts to 8% and 7% respectively. For the NN case we have also compared our PT results, which have been calculated exactly, with PT results calculated using a frequency-shift approximation. We conclude that this frequency-shift approximation is a poor approximation. We have calculated the MSD of five alkali metals, five bcc transition metals and seven fcc transition metals. The model potentials we have used include the Morse, modified Morse, and Rydberg potentials. In general the results obtained from the Green's function method are in the best agreement with experiment. However, this improvement is mostly qualitative and the values of MSD calculated from the Green's function method are not in much better agreement with the experimental data than those calculated from the QH theory. We have calculated the phonon dispersion curves (PDC's) of Na and Cu, using the 4 parameter modified Morse potential. In the case of Na, our results for the PDC's are in poor agreement with experiment. In the case of eu, the agreement between the tlleory and experiment is much better and in addition the results for the PDC's calclliated from the GF method are in better agreement with experiment that those obtained from the QH theory.
Resumo:
Volume(density)-independent pair-potentials cannot describe metallic cohesion adequately as the presence of the free electron gas renders the total energy strongly dependent on the electron density. The embedded atom method (EAM) addresses this issue by replacing part of the total energy with an explicitly density-dependent term called the embedding function. Finnis and Sinclair proposed a model where the embedding function is taken to be proportional to the square root of the electron density. Models of this type are known as Finnis-Sinclair many body potentials. In this work we study a particular parametrization of the Finnis-Sinclair type potential, called the "Sutton-Chen" model, and a later version, called the "Quantum Sutton-Chen" model, to study the phonon spectra and the temperature variation thermodynamic properties of fcc metals. Both models give poor results for thermal expansion, which can be traced to rapid softening of transverse phonon frequencies with increasing lattice parameter. We identify the power law decay of the electron density with distance assumed by the model as the main cause of this behaviour and show that an exponentially decaying form of charge density improves the results significantly. Results for Sutton-Chen and our improved version of Sutton-Chen models are compared for four fcc metals: Cu, Ag, Au and Pt. The calculated properties are the phonon spectra, thermal expansion coefficient, isobaric heat capacity, adiabatic and isothermal bulk moduli, atomic root-mean-square displacement and Gr\"{u}neisen parameter. For the sake of comparison we have also considered two other models where the distance-dependence of the charge density is an exponential multiplied by polynomials. None of these models exhibits the instability against thermal expansion (premature melting) as shown by the Sutton-Chen model. We also present results obtained via pure pair potential models, in order to identify advantages and disadvantages of methods used to obtain the parameters of these potentials.
Resumo:
La présente thèse porte sur les limites de la théorie de la fonctionnelle de la densité et les moyens de surmonter celles-ci. Ces limites sont explorées dans le contexte d'une implémentation traditionnelle utilisant une base d'ondes planes. Dans un premier temps, les limites dans la taille des systèmes pouvant être simulés sont observées. Des méthodes de pointe pour surmonter ces dernières sont ensuite utilisées pour simuler des systèmes de taille nanométrique. En particulier, le greffage de molécules de bromophényle sur les nanotubes de carbone est étudié avec ces méthodes, étant donné l'impact substantiel que pourrait avoir une meilleure compréhension de ce procédé sur l'industrie de l'électronique. Dans un deuxième temps, les limites de précision de la théorie de la fonctionnelle de la densité sont explorées. Tout d'abord, une étude quantitative de l'incertitude de cette méthode pour le couplage électron-phonon est effectuée et révèle que celle-ci est substantiellement plus élevée que celle présumée dans la littérature. L'incertitude sur le couplage électron-phonon est ensuite explorée dans le cadre de la méthode G0W0 et cette dernière se révèle être une alternative substantiellement plus précise. Cette méthode présentant toutefois de sévères limitations dans la taille des systèmes traitables, différents moyens théoriques pour surmonter ces dernières sont développés et présentés dans cette thèse. La performance et la précision accrues de l'implémentation résultante laissent présager de nouvelles possibilités dans l'étude et la conception de certaines catégories de matériaux, dont les supraconducteurs, les polymères utiles en photovoltaïque organique, les semi-conducteurs, etc.
Resumo:
Electron-phonon interaction is considered within the framework of the fluctuating valence of Cu atoms. Anderson's lattice Hamiltonian is suitably modified to take this into account. Using Green's function technique tbe possible quasiparticle excitations' are determined. The quantity 2delta k(O)/ kB Tc is calculated for Tc= 40 K. The calculated values are in good agreement with the experimental results.
Resumo:
We report experimental studies and suggest a quantitative model of spin relaxation in Mn12 acetate in a pulsed magnetic field in the temperature range 1.95.0 K. When the field applied along the anisotropy axis is swept at 140 T/s through a nonmagnetized Mn12 acetate sample, the samples magnetization switches, within a few milliseconds, from zero to saturation at a well-defined field whose value depends on temperature but is quantized in units of 0.46 T. A quantitative explanation of the effect is given in terms of a spin-phonon avalanche combined with thermally assisted resonant spin tunneling.
Resumo:
Very fast magnetic avalanches in (La, Pr)-based manganites are the signature of a phase transition from an insulating blocked charge-ordered antiferromagnetic state to a charge-delocalized ferromagnetic (CD-FM) state. We report here the experimental observation that this transition does not occur either simultaneously or randomly in the whole sample but there is instead a spatial propagation with a velocity of the order of tens of m/s. Our results show that avalanches originate from the inside of the sample, move to the outside, and occur at values of the applied magnetic field that depend on the CD-FM fraction in the sample. Moreover, upon application of surface acoustic waves at constant magnetic fields, we are able to trigger avalanches at very well-determined values of the temperature and magnetic field. Due to the interaction with the acoustic waves, the number of isolated ferromagnetic clusters in La0.225Pr0.40Ca0.375MnO3 starts to grow across the entire sample in the same way as if it were a magnetic deflagration.
Resumo:
This paper discusses our research in developing a generalized and systematic method for anomaly detection. The key ideas are to represent normal program behaviour using system call frequencies and to incorporate probabilistic techniques for classification to detect anomalies and intrusions. Using experiments on the sendmail system call data, we demonstrate that concise and accurate classifiers can be constructed to detect anomalies. An overview of the approach that we have implemented is provided.
Resumo:
Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.